
Db2 11 for z/OS

pureXML Guide

IBM

SC19-4064-06

Notes

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

Subsequent editions of this PDF will not be delivered in IBM Publications Center. Always download the
latest edition from PDF format manuals for Db2 11 for z/OS (Db2 for z/OS in IBM Documentation).

2021-06-30 edition

This edition applies to Db2® 11 for z/OS® (product number 5615-DB2), Db2 11 for z/OS Value Unit Edition (product
number 5697-P43), and to any subsequent releases until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.
© Copyright International Business Machines Corporation 2007, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/en/SSEPEK_11.0.0/home/src/tpc/db2z_pdfmanuals.html

Contents

About this information.. ix
Who should read this information...ix
Db2 Utilities Suite for z/OS..ix
Terminology and citations.. x
Accessibility features for Db2 11 for z/OS...x
How to send your comments about Db2 for z/OS documentation.. xi
How to read syntax diagrams..xi

Chapter 1. Overview of pureXML.. 1
pureXML data model ... 2

Sequences and items... 2
Atomic values... 3
Nodes..3
Data model generation in XQuery..12

Comparison of the XML model and the relational model... 13
XML data type.. 14
Tutorial: Working with XML data..15
Prerequisites for using pureXML... 18

Setting up the XML schema repository..18

Chapter 2. Working with XML data... 29
Creation of tables with XML columns..29
Altering tables with XML columns... 29
Storage structure for XML data..31
Limitation of XML virtual storage usage.. 34
Insertion of rows with XML column values... 35
Updates of XML columns... 37

Updates of entire XML documents...37
Partial updates of XML documents..38

Deletion of rows with XML documents from tables.. 40
XML versions.. 41
XML support in triggers..43
XML parsing..44

XML parsing and whitespace handling.. 44
XML parsing and DTDs..45

XML schema validation.. 47
XML schema validation and ignorable whitespace... 47
XML schema validation with an XML type modifier...48
XML schema validation with DSN_XMLVALIDATE...55
How to determine whether an XML document has been validated..58

Casts between XML data types and SQL data types...59
Examples of casts from XML schema data types to SQL data types.. 59

Retrieving XML data... 62
Retrieval of an entire XML document from an XML column.. 63
XMLQUERY function for retrieval of portions of an XML document.. 63
XMLEXISTS predicate for querying XML data..65
Constant and parameter marker passing to XMLEXISTS and XMLQUERY... 66
XMLTABLE function for returning XQuery results as a table... 67
XML support in native SQL routines...72
Requests for data in XML columns by earlier Db2 clients...74

 iii

Functions for constructing XML values... 75
Special character handling in SQL/XML publishing functions.. 78
XML serialization..79
Differences in an XML document after storage and retrieval... 81
Transforming an XML document with XSLTRANSFORM... 82

Chapter 3. XML data indexing...85
Pattern expressions... 86
Namespace declarations in XML index definitions... 87
Data types associated with pattern expressions.. 88
XML schemas and XML indexes...88
The UNIQUE keyword in an XML index definition... 89
Access methods with XML indexes... 90

Example of DOCID ANDing access (ACCESSTYPE='DI')... 91
Example of DOCID ORing access (ACCESSTYPE='DU')...92

Examples of index definitions and queries that use them..93
Examples of XML index usage by equal predicates.. 93
Examples of XML index usage by predicates that test for node existence...94
Example of XML index usage by predicates with case-insensitive comparisons...............................95
Example of index usage for an XMLEXISTS predicate with the fn:starts-with function.....................95
Example of index usage for an XMLEXISTS predicate with the fn:substring function....................... 95
Example of XML index usage by join predicates... 96
Example of XML index usage by queries with XMLTABLE... 97

Chapter 4. XML support in Db2 utilities.. 99

Chapter 5. XML schema management with the XML schema repository (XSR)...... 107
Procedures for XML schema registration and removal that are supplied with Db2.............................. 108
Example of XML schema registration and removal using stored procedures..108

Chapter 6. Db2 application programming language support for XML.................... 111
XML data in Java applications... 111
XML data in embedded SQL applications... 112

Host variable data types for XML data in embedded SQL applications..112
XML column updates in embedded SQL applications...117
XML data retrieval in embedded SQL applications... 119

XML data in ODBC applications...122
XML column updates in ODBC applications.. 122
XML data retrieval in ODBC applications...124

Data types for archiving XML documents... 125

Chapter 7. XML data encoding..127
Background information on XML internal encoding... 127
XML encoding considerations... 128

Encoding considerations for input of XML data to a Db2 table...128
Encoding considerations for retrieval of XML data from a Db2 table... 129
XML data encoding in JDBC and SQLJ applications..129

XML encoding scenarios.. 130
Encoding scenarios for input of internally encoded XML data to a Db2 table..................................130
Encoding scenarios for input of externally encoded XML data to a database..................................132
Encoding scenarios for retrieval of XML data with implicit serialization.. 134
Encoding scenarios for retrieval of XML data with explicit XMLSERIALIZE..................................... 137

Mappings of encoding names to effective CCSIDs for stored XML data.. 139
Mappings of CCSIDs to encoding names for textual XML output data.. 152

Chapter 8. Overview of XQuery...159

iv

Best applications for XQuery or XPath..161
XML namespaces and qualified names in XQuery..162
Case sensitivity in XQuery... 163
Whitespace in XQuery... 164
Comments in XQuery...164

Chapter 9. XQuery type system.. 167
Overview of the type system... 167
Constructor functions for built-in data types..167
Generic data types...168

xs:anyType..168
xs:anySimpleType.. 169
xs:anyAtomicType.. 169

Data types for untyped data..169
xs:untyped..169
xs:untypedAtomic.. 170

xs:string..170
Numeric data types... 171

xs:decimal.. 171
xs:double.. 171
xs:integer..172
Range limits for numeric types.. 172

xs:boolean..173
Date and time data types.. 173

xs:date.. 173
xs:dateTime.. 174
xs:dayTimeDuration... 176
xs:duration..177
xs:time.. 178
xs:yearMonthDuration..179

Casts between XML schema data types... 179

Chapter 10. XQuery prologs and expressions.. 183
Prologs... 183

Boundary-space declaration..184
Copy-namespaces declaration.. 184
Namespace declarations... 185
Default namespace declarations... 186

Expressions..187
Expression evaluation and processing.. 187
Primary expressions...188
Path expressions.. 192
Sequence expressions... 200
Filter expressions...201
Arithmetic expressions.. 201
Comparison expressions..204
Logical expressions.. 209
XQuery constructors.. 210
FLWOR expressions... 221
Conditional expressions...232
Basic updating expressions... 234
Castable expressions... 242
Regular expressions...243

Chapter 11. Descriptions of XQuery functions... 247
fn:abs function... 247
fn:adjust-date-to-timezone function.. 248

 v

fn:adjust-dateTime-to-timezone function.. 249
fn:adjust-time-to-timezone function.. 251
fn:avg function... 252
fn:boolean function..253
fn:compare function.. 254
fn:concat function..255
fn:contains function...255
fn:count function... 256
fn:current-date function.. 256
fn:current-dateTime function.. 257
fn:current-time function.. 257
fn:data function... 257
fn:dateTime function... 258
fn:day-from-date function...258
fn:day-from-dateTime function...259
fn:days-from-duration function...259
fn:distinct-values function...260
fn:hours-from-dateTime function... 261
fn:hours-from-duration function...261
fn:hours-from-time function... 262
fn:implicit-timezone function.. 263
fn:minutes-from-dateTime function... 263
fn:minutes-from-duration function...263
fn:minutes-from-time function... 264
fn:month-from-date function.. 265
fn:month-from-dateTime function.. 265
fn:months-from-duration function..266
fn:normalize-space function... 266
fn:last function...267
fn:local-name function.. 268
fn:lower-case function...269
fn:matches function...270
fn:max function..271
fn:min function...272
fn:name function..273
fn:not function... 274
fn:position function..274
fn:replace function...275
fn:round function... 277
fn:seconds-from-datetime function..277
fn:seconds-from-duration function...278
fn:seconds-from-time function... 279
fn:starts-with function...279
fn:string function... 280
fn:string-length function..280
fn:substring function... 281
fn:sum function..282
fn:timezone-from-date function... 282
fn:timezone-from-dateTime function... 283
fn:timezone-from-time function... 283
fn:tokenize function...284
fn:translate function.. 285
fn:upper-case function.. 286
fn:year-from-date function..287
fn:year-from-datetime function.. 287
fn:years-from-duration function... 288

vi

Information resources for Db2 11 for z/OS and related products......................... 291

Notices..293
General-use Programming Interface and Associated Guidance Information....................................... 294
Trademarks.. 294
Terms and conditions for product documentation... 295
Privacy policy considerations.. 295

Glossary.. 297

Index.. 299

 vii

viii

About this information

This information describes pureXML® (Db2 for z/OS support for XML). This support lets you store XML data
in Db2 databases and retrieve XML data from Db2 databases.

Throughout this information, "Db2" means "Db2 11 for z/OS". References to other Db2 products use
complete names or specific abbreviations.

Important: To find the most up to date content for Db2 11 for z/OS, always use IBM® Documentation
or download the latest PDF file from PDF format manuals for Db2 11 for z/OS (Db2 for z/OS in IBM
Documentation).

This information assumes that Db2 11 is running in new-function mode, and that your application is
running with the application compatibility value of 'V11R1', except for the following section that describe
the migration process and how to activate new function:

• Migrating to Db2 11 (Db2 Installation and Migration)
• What's new in Db2 11 (Db2 for z/OS What's New?)
• Changes in Db2 11 (Db2 for z/OS What's New?)

Availability of new function in Db2 11

The behavior of data definition statements such as CREATE, ALTER, and DROP, which embed data
manipulation SQL statements that contain new capabilities, depends on the application compatibility
value that is in effect for the application. An application compatibility value of 'V11R1' must
be in effect for applications to use new capability in embedded statements such as SELECT,
INSERT, UPDATE, DELETE, MERGE, CALL, and SET assignment-statement. Otherwise, an application
compatibility value of 'V10R1' can be used for data definition statements.

Generally, new SQL capabilities, including changes to existing language elements, functions, data
manipulation statements, and limits, are available only in new-function mode with applications set to
an application compatibility value of 'V11R1'.

Optimization and virtual storage enhancements are available in conversion mode unless stated
otherwise.

SQL statements can continue to run with the same expected behavior as in DB2® 10 new-function
mode with an application compatibility value of 'V10R1'.

Who should read this information
This information is for the following users:

• Db2 for z/OS application developers who are familiar with Structured Query Language (SQL) and who
are familiar with XML.

• Db2 for z/OS database managers who are familiar with XML.

Db2 Utilities Suite for z/OS
Important: In Db2 11, the Db2 Utilities Suite for z/OS is available as an optional product. You must
separately order and purchase a license to such utilities, and discussion of those utility functions in this
publication is not intended to otherwise imply that you have a license to them.

Db2 11 utilities can use the DFSORT program regardless of whether you purchased a license for DFSORT
on your system. For more information, see the following informational APARs:

• II14047
• II14213
• II13495

© Copyright IBM Corp. 2007, 2021 ix

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/home/src/tpc/db2z_11_prodhome.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_migrdb2.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/wnew/src/tpc/db2z_11_wnew.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/wnew/src/tpc/db2z_whatschanged.html

Db2 utilities can use IBM Db2 Sort for z/OS (5655-W42) as an alternative to DFSORT for utility SORT and
MERGE functions. Use of Db2 Sort for z/OS requires the purchase of a Db2 Sort for z/OS license. For more
information about Db2 Sort for z/OS, see Db2 Sort for z/OS.

Related concepts
Db2 utilities packaging (Db2 Utilities)

Terminology and citations
When referring to a Db2 product other than Db2 for z/OS, this information uses the product's full name to
avoid ambiguity.

The following terms are used as indicated:

Db2
Represents either the Db2 licensed program or a particular Db2 subsystem.

IBM re-branded DB2 to Db2, and Db2 for z/OS is the new name of the offering previously know as
"DB2 for z/OS". For more information, see Revised naming for IBM Db2 family products on IBM z/OS
platform. As a result, you might sometimes still see references to the original names, such as "DB2 for
z/OS" and "DB2", in different IBM web pages and documents. If the PID, Entitlement Entity, version,
modification, and release information match, assume that they refer to the same product.

Tivoli® OMEGAMON® XE for Db2 Performance Expert on z/OS
Refers to any of the following products:

• IBM Tivoli OMEGAMON XE for Db2 Performance Expert on z/OS
• IBM Db2 Performance Monitor on z/OS
• IBM Db2 Performance Expert for Multiplatforms and Workgroups
• IBM Db2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS®
Represents CICS Transaction Server for z/OS.

IMS
Represents the IMS Database Manager or IMS Transaction Manager.

MVS™
Represents the MVS element of the z/OS operating system, which is equivalent to the Base Control
Program (BCP) component of the z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the z/OS Security Server.

Accessibility features for Db2 11 for z/OS
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including Db2 11 for z/OS.
These features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size

x About this information

http://www.ibm.com/software/data/db2imstools/db2tools/db2-sort/
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utlpackaging.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html

Tip: IBM Documentation (which includes information for Db2 for z/OS) and its related publications are
accessibility-enabled for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

Keyboard navigation
For information about navigating the Db2 for z/OS ISPF panels using TSO/E or ISPF, refer to the z/OS
TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information about the commitment
that IBM has to accessibility.

How to send your comments about Db2 for z/OS documentation
Your feedback helps IBM to provide quality documentation.

End of support (EOS): Db2 11 reached EOS on March 31, 2021. The online product documentation
is provided as-is for clients with extended service contracts. For more information, see End of support
(March 31, 2021) (Db2 for z/OS in IBM Documentation).

Send any comments about Db2 for z/OS and related product documentation by email to
db2zinfo@us.ibm.com.

To help us respond to your comment, include the following information in your email:

• The product name and version
• The address (URL) of the page, for comments about online documentation
• The book name and publication date, for comments about PDF manuals
• The topic or section title
• The specific text that you are commenting about and your comment

Related concepts
About this information (Db2 for z/OS in IBM Documentation)
Related reference
PDF format manuals for Db2 11 for z/OS (Db2 for z/OS in IBM Documentation)

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM documentation.

Apply the following rules when reading the syntax diagrams that are used in Db2 for z/OS documentation:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a statement.

The ───► symbol indicates that the statement syntax is continued on the next line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.
• Required items appear on the horizontal line (the main path).

required_item

About this information xi

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/home/src/tpc/db2z_11_prodhome.html
http://www.ibm.com/able
https://www.ibm.com/docs/en/SSEPEK_11.0.0/home/src/cmn/db2z_cmn_eos.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/home/src/cmn/db2z_cmn_eos.html
mailto:db2zinfo@us.ibm.com
https://www.ibm.com/docs/en/SSEPEK_11.0.0/home/src/cmn/db2z_cmn_aboutinfo.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/home/src/tpc/db2z_pdfmanuals.html

• Optional items appear below the main path.
required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the

main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

required_item fragment-name

fragment-name
required_item

optional_name

xii About this information

• For some references in syntax diagrams, you must follow any rules described in the description for that
diagram, and also rules that are described in other syntax diagrams. For example:

– For expression, you must also follow the rules described in Expressions (Db2 SQL).
– For references to fullselect, you must also follow the rules described in fullselect (Db2 SQL).
– For references to search-condition, you must also follow the rules described in Search conditions

(Db2 SQL).
• With the exception of XPath keywords, keywords appear in uppercase (for example, FROM). Keywords

must be spelled exactly as shown. XPath keywords are defined as lowercase names, and must be
spelled exactly as shown. Variables appear in all lowercase letters (for example, column-name). They
represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

Related concepts
Commands in Db2 (Db2 Commands)
Db2 online utilities (Db2 Utilities)
Db2 stand-alone utilities (Db2 Utilities)

About this information xiii

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_expressionsintro.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_fullselect.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/comref/src/tpc/db2z_aboutcommands.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_onlineutilities.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_standaloneutilities.html

xiv Db2 11 for z/OS: pureXML Guide

Chapter 1. Overview of pureXML
pureXML is Db2 for z/OS support for XML. pureXML lets your client applications manage XML data in Db2
tables.

You can store well-formed XML documents in their hierarchical form and retrieve all or portions of those
documents.

Because the stored XML data is fully integrated into the Db2 database system, you can access and
manage the XML data by leveraging Db2 functions and capabilities.

To efficiently manage traditional SQL data types and XML data, Db2 stores XML data in separate table
spaces from the tables that contain XML columns. However, the underlying storage mechanism that is
used for XML data is transparent to the application. The application does not need to explicitly specify
which XML table spaces to use, or to manage the physical storage for XML and non-XML objects.

XML document storage: The XML column data type is provided for storage of XML data in Db2 tables.
Most SQL statements support the XML data type. This enables you to perform many common database
operations with XML data, such as creating tables with XML columns, adding XML columns to existing
tables, creating indexes over XML columns, creating triggers on tables with XML columns, and inserting,
updating, or deleting XML documents. You can update entire XML documents in an XML column, or update
only portions of XML documents.

Alternatively, you can extract data items from an XML document and store those data items in columns of
relational tables, using the SQL XMLTABLE built-in function in the INSERT via SELECT form of an INSERT
statement.

XML document retrieval: You can use SQL to retrieve entire documents from XML columns, just as you
retrieve data from any other type of column. When you need to retrieve portions of documents, you can
specify XQuery expressions, through SQL with XML extensions (SQL/XML).

XML schema validation: XML schema validation is the process of determining whether the structure,
content, and data types of an XML document are valid according to an XML schema. You can perform XML
schema validation explicitly, by using the DSN_XMLVALIDATE function, or implicitly, if the XML column
into which you insert XML documents has an XML type modifier.

Application development: Application development support of XML enables applications to combine XML
and relational data access and storage. The following programming languages support the XML data type:

• Assembler
• C or C++ (embedded SQL or Db2 ODBC)
• COBOL
• Java™ (JDBC or SQLJ)
• PL/I

Database administration: Db2 for z/OS database administration support for pureXML includes the
following items:

XML schema repository (XSR)
The XML schema repository (XSR) is a repository for all XML schemas that are required to validate and
process XML documents that are stored in XML columns.

Utility support
Db2 for z/OS utilities support the XML data type. The storage structure for XML data and indexes is
similar to the storage structure for LOB data and indexes. As with LOB data, XML data is not stored
in the base table space, but it is stored in separate table spaces that contain only XML data. The
XML table spaces also have their own index spaces. Therefore, the implications of using utilities for
manipulating, backing up, and restoring XML data and LOB data are similar.

Performance: Indexing support is available for data stored in XML columns. The use of indexes over
XML data can improve the efficiency of queries that you issue against XML documents. An XML index

© Copyright IBM Corp. 2007, 2021 1

differs from a relational index in that a relational index applies to an entire column, whereas an XML
index applies to part of the data in a column. You indicate which parts of an XML column are indexed by
specifying an XML pattern, which is a limited XPath expression.

pureXML data model
The pureXML data model follows the XPath 2.0 and the XQuery 1.0 data model. This data model provides
an abstract representation of one or more XML documents or fragments.

The purpose of the data model is to define all permissible values of expressions in XQuery, including
values that are used during intermediate calculations. Every XQuery expression takes as its input an
instance of the data model and returns an instance of the data model. The pureXML data model is
described in terms of sequences and items, atomic values, and nodes.

Related concepts
Overview of XQuery
XQuery is a functional programming language that was designed by the World Wide Web Consortium
(W3C) to meet specific requirements for querying and modifying XML data.

Sequences and items
The XQuery data model is based on the notion of a sequence. The value of an XQuery expression is always
a sequence. A sequence is an ordered collection of zero or more items. An item is either an atomic value or
a node.

A sequence can contain nodes, atomic values, or any mixture of nodes and atomic values. For example,
each of the following values can each be represented as a single sequence:

• 36
• <dog/>
• (2, 3, 4)
• (36, <dog/>, "cat")
• ()
• An XML document

A node can occur in more than one sequence, and a sequence can contain duplicate items. A sequence
cannot be a member of another sequence. In other words, sequences cannot be nested. When two
sequences are combined, the result is always a flattened sequence of nodes and atomic values. For
example, appending the sequence (2, 3) to the sequence (3, 5, 6) results in the single sequence (3, 5,
6, 2, 3). Combining these sequences does not produce the sequence (3, 5, 6, (2, 3)) because nested
sequences never occur.

A single item that appears on its own is modeled as a sequence that contains one item. For example,
there is no distinction between the sequence (2) and the atomic value 2.

A sequence that contains zero items is called an empty sequence. Empty sequences can be used to
represent missing or unknown information.

Related concepts
Atomic values
An atomic value is an instance of one of the built-in atomic data types that are defined by XML Schema.
Nodes
A node conforms to one of the types of nodes that are defined for XQuery. These node types include:
document, element, attribute, text, processing instruction, comment, and namespace nodes.
Data model generation in XQuery

2 Db2 11 for z/OS: pureXML Guide

Before an XQuery expression can be processed, the input documents must be represented in the
pureXML data model.

Atomic values
An atomic value is an instance of one of the built-in atomic data types that are defined by XML Schema.

These data types include strings, integers, decimals, dates, and other atomic types. These types are
described as "atomic" because they cannot be subdivided. Some atomic types have literal values. For
example, the following literals are atomic values:

• "this is a string"
• 45
• 1.44

Other atomic types have constructor functions to build atomic values out of strings. For example, the
following constructor function builds a value of type xs:decimal out of the string "12.34":

xs:decimal("12.34")

Related concepts
Sequences and items
The XQuery data model is based on the notion of a sequence. The value of an XQuery expression is always
a sequence. A sequence is an ordered collection of zero or more items. An item is either an atomic value or
a node.
Nodes
A node conforms to one of the types of nodes that are defined for XQuery. These node types include:
document, element, attribute, text, processing instruction, comment, and namespace nodes.
Data model generation in XQuery
Before an XQuery expression can be processed, the input documents must be represented in the
pureXML data model.
Related reference
xs:decimal
The data type xs:decimal represents a subset of the real numbers that can be represented by decimal
numerals.

Nodes
A node conforms to one of the types of nodes that are defined for XQuery. These node types include:
document, element, attribute, text, processing instruction, comment, and namespace nodes.

The nodes of a sequence form one or more trees that consist of a document node and all of the nodes that
are reachable directly or indirectly from the document node. Every node belongs to exactly one tree, and
every tree has exactly one document node. A tree whose root node is a document node is referred to as a
document. A tree whose root node is not a document node is referred to as a fragment.

The following XML document includes a document element, named product, which contains a
description element. The product element has an attribute named pid (purchase order ID). The
description element contains elements named name, details, price, and weight.

<product xmlns="http://posample.org" pid="100-101-01">
 <description>
 <name>Snow Shovel, Deluxe 24"</name>
 <details>A Deluxe Snow Shovel, 24 inches wide, ergonomic
curved handle with D-Grip</details>
 <price>19.99</price>
 <weight>2 kg</weight>
 </description>
</product>

Chapter 1. Overview of pureXML 3

The following figure shows a simplified representation of the data model for the previously described
document. The figure includes a document node, element nodes, attribute nodes, and text nodes.

Figure 1. Data model diagram for document for a product

As the example illustrates, a node can have other nodes as children, thus forming one or more node
hierarchies.

Node identity
Each node has a unique identity. This means that two nodes are distinguishable even though their names
and values might be the same. In contrast, atomic values do not have an identity. Every instance of an
atomic value (for example, the integer 7) is identical to every other instance of that value.

Document order
Among all of the nodes in a hierarchy, there is a total ordering called document order, in which each node
appears before its children. Document order corresponds to the order in which the nodes appear when
the node hierarchy is represented in XML format:

• The document node is the first node.
• Element nodes occur before their children.
• Namespace nodes immediately follow the element node with which they are associated.
• Attribute nodes occur after namespace nodes, or their associated element node, if no namespace nodes

exist.

4 Db2 11 for z/OS: pureXML Guide

Attribute nodes and namespace nodes are not children of an element node, but the associated element
node is their parent node.

The relative order of attribute nodes is arbitrary, but this order does not change during the processing of
an XQuery expression.

• Element nodes, text nodes, processing instruction nodes, and comment nodes can be children of an
element node or a document node.

• The relative order of siblings is determined by their order in the node hierarchy.
• Children and descendants of a node occur before siblings that follow the node.

Node properties
Each node has properties that describe characteristics of that node. For example, a node's properties
might include the name of the node, its children, its parent, its attributes, and other information that
describes the node. The node kind determines which properties are present for specific nodes.

A node can have one or more of the following properties:
node name

The name of the node (expressed as a QName).
parent

The node that is the parent of the current node.
type name

The dynamic (run time) type of the node.
children

The sequence of nodes that are children of the current node.
attributes

The set of attribute nodes that belong to the current node.
string value

A string value that can be extracted from the node.
typed value

A sequence of zero or more atomic values that can be extracted from the node.
target

Identifies the application to which a processing instruction is directed. The target is an NCName (local
name with no colons).

content
The content of a processing instruction, text node, or comment node.

Related concepts
Sequences and items
The XQuery data model is based on the notion of a sequence. The value of an XQuery expression is always
a sequence. A sequence is an ordered collection of zero or more items. An item is either an atomic value or
a node.
Atomic values
An atomic value is an instance of one of the built-in atomic data types that are defined by XML Schema.
Data model generation in XQuery
Before an XQuery expression can be processed, the input documents must be represented in the
pureXML data model.

Document nodes
A document node encapsulates an XML document.

A document node cannot have parent nodes and can have zero or more child nodes. The child nodes can
include element nodes, text nodes, processing instruction nodes, or comment nodes. To be a well-formed
document, the document node must have exactly one child element node and no child text nodes.

Chapter 1. Overview of pureXML 5

A document node has the following node properties:

• children
• string value
• typed value

For a document node, the string value is the concatenation of all of the string values of all of its
descendent text nodes, in document order, and the typed value is the same as the string value of type
xs:untypedAtomic.

For example, suppose that a document has the following textual representation:

<product xmlns="http://posample.org" pid="100-101-01">
 <description>
 <name>Snow Shovel, Deluxe 24"</name>
 <details>A Deluxe Snow Shovel, 24 inches wide, ergonomic
curved handle with D-Grip</details>
 <price>19.99</price>
 <weight>2 kg</weight>
 </description>
</product>

The document node has the following property values:

Table 1. Properties of the document node

Node property Value Value type

children product node

string value "Snow Shovel, Deluxe 24"A Deluxe
Snow Shovel, 24 inches wide,
ergonomic curved handle with D-
Grip19.992 kg"

typed value "Snow Shovel, Deluxe 24"A Deluxe
Snow Shovel, 24 inches wide,
ergonomic curved handle with D-
Grip19.992 kg"

xs:untypedAtomic

Related concepts
Element nodes
An element node encapsulates an XML element.
Attribute nodes
An attribute node represents an XML attribute.
Text nodes
A text node encapsulates XML character content.
Processing instruction nodes
A processing instruction node encapsulates an XML processing instruction.
Comment nodes
A comment node encapsulates XML comments.

Element nodes
An element node encapsulates an XML element.

An element can have zero or one parent, and zero or more children. The children can include element
nodes, processing instruction nodes, comment nodes, and text nodes. Document and attribute nodes
are never children of element nodes. However, an element node is considered to be the parent of its
attributes. The attributes of an element node must have unique QNames.

An element node has the following node properties:

6 Db2 11 for z/OS: pureXML Guide

• node name
• parent
• type name (The type name of an element node in Db2 is always xs:untyped.)
• children
• attributes
• string value
• typed value
• in-scope namespaces

For an element node, the string value is the concatenation of the string values of all of its text node
descendants in document order. If the element is empty, the string value is the empty string "". The typed
value of an element is one of the following values:

• If the element can be null, the typed value is ().
• If the element is empty, the typed value is the empty sequence ().
• Otherwise, the typed value is its string value as type xs:untypedAtomic.

For example, suppose that a document has the following textual representation:

<product xmlns="http://posample.org" pid="100-101-01">
 <description>
 <name>Snow Shovel, Deluxe 24"</name>
 <details>A Deluxe Snow Shovel, 24 inches wide, ergonomic
curved handle with D-Grip</details>
 <price>19.99</price>
 <weight>2 kg</weight>
 </description>
</product>

The product element node has the following property values:

Table 2. Properties of the product node

Node property Value Value type

node name product

parent document node

type name xs:untyped

children description node

attributes pid

string value "Snow Shovel, Deluxe 24"A Deluxe
Snow Shovel, 24 inches wide,
ergonomic curved handle with D-
Grip19.992 kg"

typed value "Snow Shovel, Deluxe 24"A Deluxe
Snow Shovel, 24 inches wide,
ergonomic curved handle with D-
Grip19.992 kg"

xs:untypedAtomic

in-scope namespaces (default, http://posample.org)

The name element node has the following property values:

Chapter 1. Overview of pureXML 7

Table 3. Properties of the name node

Node property Value Value type

node name name

parent description node

type name xs:untyped

children text node "Snow Shovel, Deluxe
24" "

attributes none

string value "Snow Shovel, Deluxe 24" "

typed value "Snow Shovel, Deluxe 24" " xs:untypedAtomic

in-scope namespaces (default, http://posample.org)

Related concepts
Document nodes
A document node encapsulates an XML document.
Attribute nodes
An attribute node represents an XML attribute.
Text nodes
A text node encapsulates XML character content.
Processing instruction nodes
A processing instruction node encapsulates an XML processing instruction.
Comment nodes
A comment node encapsulates XML comments.

Attribute nodes
An attribute node represents an XML attribute.

An attribute node can have zero or one parent. The element node that owns an attribute is considered to
be its parent, even though an attribute node is not a child of its parent element.

An attribute node has the following node properties:

• node name
• parent
• type name (The type name of an attribute node in Db2 is always xs:untypedAtomic.)
• string value
• typed value

For an attribute node, the string value is the normalized value of the attribute or schema normalized value
of the attribute if the attribute was validated with a schema. The typed value is the same as the string
value of type xs:untypedAtomic.

For example, suppose that a document has the following textual representation:

<product xmlns="http://posample.org" pid="100-101-01">
 <description>
 <name>Snow Shovel, Deluxe 24"</name>
 <details>A Deluxe Snow Shovel, 24 inches wide, ergonomic
curved handle with D-Grip</details>
 <price>19.99</price>
 <weight>2 kg</weight>
 </description>
</product>

8 Db2 11 for z/OS: pureXML Guide

The pid attribute has the following property values:

Table 4. Properties of the pid attribute node

Node property Value Value type

node name pid

parent product node

type name xs:untypedAtomic

string value "100-101-01"

typed value 100-101-01" xs:untypedAtomic

Related concepts
Document nodes
A document node encapsulates an XML document.
Element nodes
An element node encapsulates an XML element.
Text nodes
A text node encapsulates XML character content.
Processing instruction nodes
A processing instruction node encapsulates an XML processing instruction.
Comment nodes
A comment node encapsulates XML comments.
Data model generation in XQuery
Before an XQuery expression can be processed, the input documents must be represented in the
pureXML data model.

Text nodes
A text node encapsulates XML character content.

A text node can have zero or one parent. The content of a text node can be empty. However, unless the
parent of a text node is empty, the content of the text node cannot be an empty string. Text nodes that are
children of a document or element node never appear as adjacent siblings. During document or element
node construction, any adjacent siblings are combined into a single text node. If the resulting text node is
empty, it is discarded.

Text nodes have the following node properties:

• content
• parent

For example, suppose that a document has the following textual XML representation:

<product xmlns="http://posample.org" pid="100-101-01">
 <description>
 <name>Snow Shovel, Deluxe 24"</name>
 <details>A Deluxe Snow Shovel, 24 inches wide, ergonomic
curved handle with D-Grip</details>
 <price>19.99</price>
 <weight>2 kg</weight>
 </description>
</product>

The text node beneath the name element node has the following property values:

Chapter 1. Overview of pureXML 9

Table 5. Properties of the name text node

Node property Value

content Snow Shovel, Deluxe 24"

parent name

The string value of a text node is the content of the node, which in the preceding example is " Snow
Shovel, Deluxe 24" ." The typed value of a text node is the same value as type xs:untypedAtomic.

Related concepts
Document nodes
A document node encapsulates an XML document.
Element nodes
An element node encapsulates an XML element.
Attribute nodes
An attribute node represents an XML attribute.
Processing instruction nodes
A processing instruction node encapsulates an XML processing instruction.
Comment nodes
A comment node encapsulates XML comments.
Related reference
xs:untypedAtomic
The data type xs:untypedAtomic serves as a special type annotation to indicate atomic values that
have not been validated by an XML schema or a DTD.

Processing instruction nodes
A processing instruction node encapsulates an XML processing instruction.

A processing instruction node can have zero or one parent. The target of a processing instruction must be
an NCName (a local name with no colons).

A processing instruction node has the following node properties:

• target
• content
• parent

For example, consider the following processing instruction:

<?xml-stylesheet href="book.css" type="text/css"?>

This processing instruction has the following property values:

Table 6. Properties of the processing instruction node

Node property Value

target xml-stylesheet

content href="book.css" type="text/css"

parent document node

The string value of a processing instruction node is the content of the node, which in this case is
href="book.css" type="text/css". The typed value is the same value as type xs:string.

10 Db2 11 for z/OS: pureXML Guide

Related concepts
Document nodes
A document node encapsulates an XML document.
Element nodes
An element node encapsulates an XML element.
Attribute nodes
An attribute node represents an XML attribute.
Text nodes
A text node encapsulates XML character content.
Comment nodes
A comment node encapsulates XML comments.

Comment nodes
A comment node encapsulates XML comments.

A comment node can have zero or one parent.

A comment node has the following node properties:

• content
• parent

For example, consider the following comment:

<ID>
<!-- This element contains an ID number. -->
101
</ID>

This comment has the following property values:

Table 7. Properties of the comment node

Node property Value

content This element contains an ID number.

parent ID node

The string value of a comment node is the content of the node, which in the case of the preceding
example is This element contains an ID number. The typed value is the same value as type
xs:string.

Related concepts
Document nodes
A document node encapsulates an XML document.
Element nodes
An element node encapsulates an XML element.
Attribute nodes
An attribute node represents an XML attribute.
Text nodes
A text node encapsulates XML character content.
Processing instruction nodes

Chapter 1. Overview of pureXML 11

A processing instruction node encapsulates an XML processing instruction.

Data model generation in XQuery
Before an XQuery expression can be processed, the input documents must be represented in the
pureXML data model.

An input XML document is transformed into an instance of the pureXML data model through a process
called XML parsing. Alternatively, you can generate an instance of the pureXML data model by using SQL
XML constructors, such as XMLELEMENT and XMLATTRIBUTES. These built-in functions enable you to
generate XML data from relational data. Likewise, the result of an XQuery expression (an instance of
the pureXML data model) can be transformed into an XML representation through a process called XML
serialization.

• During XML parsing, the string representation of an XML document is transformed into an instance of the
XQuery model. Optionally, the XML document can be validated against a specific schema. The parsed
data is represented as a hierarchy of nodes and atomic values. Each atomic value, element node, and
attribute node in the XQuery data model is annotated with a dynamic type. The dynamic type specifies
a range of values. For example, an attribute named version might have the dynamic type xs:decimal
to indicate that the attribute contains a decimal value.

Restriction: If the XML document is validated against a schema, Db2 does not keep the type annotation
for each node. The data is stored as untyped.

The value of an attribute is represented directly within the attribute node. An attribute node of unknown
type is annotated with the dynamic type xs:untypedAtomic.

The value of an element is represented by the children of the element node, which might include text
nodes and other element nodes. The dynamic type of an element node indicates how the values in the
child text nodes are to be interpreted. All element nodes have the type xs:untyped.

An atomic value of unknown type is annotated with the type xs:untypedAtomic.

If an input document has no schema, the document is not validated. Db2 assigns nodes and atomic
values as untyped (xs:untyped or xs:untypedAtomic).

• During serialization, the sequence of nodes and atomic values (the instance of the XQuery data model)
is converted into its string representation. The result of serialization does not always represent a
well-formed document. In fact, serialization can result in a single atomic value (for example, 17) or a
sequence of elements that do not have a common parent.

Related concepts
Sequences and items
The XQuery data model is based on the notion of a sequence. The value of an XQuery expression is always
a sequence. A sequence is an ordered collection of zero or more items. An item is either an atomic value or
a node.
Atomic values
An atomic value is an instance of one of the built-in atomic data types that are defined by XML Schema.
Nodes
A node conforms to one of the types of nodes that are defined for XQuery. These node types include:
document, element, attribute, text, processing instruction, comment, and namespace nodes.
XML parsing
XML parsing is the process of converting XML data from its textual XML format to its hierarchical format.
XML serialization

12 Db2 11 for z/OS: pureXML Guide

XML serialization is the process of converting XML data from its internal representation in a Db2 table to
the textual XML format that it has in an application.

Comparison of the XML model and the relational model
When you design your databases, you need to decide whether your data is better suited to the XML model
or the relational model.

This topic discusses some of the factors that you need to consider as you make this decision.

The major differences between XML data and relational data are:

• XML data is hierarchical; relational data has a flat structure.

An XML document contains information about the relationship of data items to each other in the form of
the hierarchy. With the relational model, the only types of relationships that can be defined are parent
table and dependent table relationships.

• XML data is self-describing; relational data is not.

An XML document contains not only the data, but also tagging for the data that explains what it is. A
single document can have different types of data. With the relational model, the content of the data is
defined by its column definition. All data in a column must have the same type of data.

• XML data has inherent ordering; relational data does not.

For an XML document, the order in which data items are specified is assumed to be the order of the
data in the document. There is often no other way to specify order within the document. For relational
data, the order of the rows is not guaranteed unless you specify an ORDER BY clause on one or more
columns.

Sometimes the nature of the data dictates the way in which you store it. For example, if the data is
naturally hierarchical and self-describing, you might store it as XML data. However, other factors might
influence your decision about which model to use.

Some of those factors are:

• Whether maximum flexibility of the data is needed

Relational tables are fairly rigid. For example, normalizing one table into many or denormalizing many
tables into one can be very difficult. If the data design changes often, representing it as XML data is a
better choice.

• Whether maximum performance for data retrieval is needed

Some expense is associated with serializing and interpreting XML data. Retrieval of a few items from
a large XML document is relatively expensive, so performance might be better for data in a relational
format. However, for retrieval of entire documents, XML data might be more efficient if a large number
of relational joins are needed to retrieve equivalent data in a relational format.

• Whether the data is processed later as relational data

If subsequent processing of the data depends on the data being stored in a relational database, it might
be appropriate to store parts of the data as relational, using decomposition. An example of this situation
is when online analytical processing (OLAP) is applied to the data in a data warehouse. Also, if other
processing is required on the XML document as a whole, then storing some of the data as relational as
well as storing the entire XML document might be a suitable approach in this case.

• Whether the data components have meaning outside a hierarchy

Data might be inherently hierarchical in nature, but the child components do not need the parents to
provide value. For example, a purchase order might contain part numbers. The purchase orders with
the part numbers might be best represented as XML documents. However, each part number has a part
description associated with it. It might be better to include the part descriptions in a relational table,
because the relationship between the part numbers and the part descriptions is logically independent
of the purchase orders in which the part numbers are used.

• Whether data attributes apply to all data, or to only a small subset of the data

Chapter 1. Overview of pureXML 13

Some sets of data have a large number of possible attributes, but only a small number of those
attributes apply to any particular data value. For example, in a retail catalog, there are many possible
data attributes, such as size, color, weight, material, style, weave, power requirements, or fuel
requirements. For any given item in the catalog, only a subset of those attributes is relevant: power
requirements are meaningful for a table saw, but not for a coat. This type of data is difficult to represent
and search with a relational model, but relatively easy to represent and search with an XML model.

• Whether referential integrity is required

XML columns cannot be defined as part of referential constraints. Therefore, if values in XML documents
need to participate in referential constraints, you should store the data as relational data.

• Whether the data needs to be updated often

Currently, you can update XML data in an XML column only by replacing full documents. If you need to
frequently update small fragments of very large documents for a large number of rows, it can be more
efficient to store the data in non-XML columns. If, however, you are updating small documents and only
a few documents at a time, storing as XML can be efficient as well.

XML data type
The XML data type is used to define columns of a table that store XML values. This data type provides the
ability to store well-formed XML documents in a database.

All XML data is stored in the database in an internal representation. Character data in this internal
representation is in the UTF-8 encoding scheme. The internal representation of values in an XML column
is not a string and not directly comparable to string values.

An XML value can be transformed into a textual XML value that represents the XML document in the
following ways:

• By using the XMLSERIALIZE function
• By retrieving the value into an application variable of an XML, string, or binary type

Similarly, a textual XML value that represents an XML document can be transformed to an XML value by
using the XMLPARSE function or by storing a value from a string, binary, or XML application data type in an
XML column.

A binary XML value is a value that is in the Extensible Dynamic Binary XML Db2 Client/Server Binary XML
Format. This format is an external representation of an XML value that is only used for exchange with a
Db2 client application or the UNLOAD or LOAD utilities. The binary representation provides more efficient
XML parsing. An XML value can be transformed into a binary XML value that represents the XML document
in the following ways:

• In a JDBC or SQLJ application, by retrieving the XML column value into an java.sql.SQLXML object,
and then retrieving the data from the java.sql.SQLXML object as a binary data type, such as
InputStream. JDBC 4.0 or later provides support for the java.sql.SQLXML data type.

• In an ODBC application, by binding the XML column to an application variable with the
SQL_C_BINARYXML data type, and retrieving the XML value into that application variable.

• By running the UNLOAD utility, and using one of the following field specifications for the XML output:

CHAR BLOBF template-name BINARYXML
VARCHAR BLOBF template-name BINARYXML
XML BINARYXML

Similarly, a binary value that represents an XML document can be transformed to an XML value in the
following ways:

• In a JDBC or SQLJ application, by assigning the input value to an java.sql.SQLXML object, and then
inserting the data from the java.sql.SQLXML object into the XML column.

• In an ODBC application, by binding a parameter marker for input to an XML column to an application
variable with the SQL_C_BINARYXML data type, and inserting the binary data into the XML column.

• By running the LOAD utility, and using one of the following field specifications for the XML input:

14 Db2 11 for z/OS: pureXML Guide

CHAR BLOBF BINARYXML
VARCHAR BLOBF BINARYXML
XML BINARYXML

The size of an XML value in a Db2 table has no architectural limit. However, textual XML data that is stored
in or retrieved from an XML column is limited to 2 GB.

Validation of an XML document against an XML schema is supported. XML schema validation is typically
performed during INSERT or UPDATE into an XML column. If an XML column has an XML type modifier,
only documents that are valid according to the XML schema that is specified by the XML type modifier can
be inserted into the column. If an XML column does not have an XML type modifier, validation is optional.

Related concepts
Creation of tables with XML columns
To create tables with XML columns, you specify columns with the XML data type in the CREATE TABLE
statement. A table can have one or more XML columns.
XML parsing
XML parsing is the process of converting XML data from its textual XML format to its hierarchical format.
XML serialization
XML serialization is the process of converting XML data from its internal representation in a Db2 table to
the textual XML format that it has in an application.

Tutorial: Working with XML data
pureXML lets you define table columns that store a single, well-formed XML document in each row. This
tutorial demonstrates how to set up a Db2 database system to store XML data and how to perform basic
operations with XML data.

Before you begin
• Start a SPUFI session, or create a DSNTEP2 job that you can use to issue the SQL statements in these

exercises.
• Set the SQL terminator to a character other than a semicolon, such as the number sign (#), so that SQL

statements can contain embedded semicolons.
• If you use SPUFI, also change the following settings:

– Set CAPS OFF so that the ISPF editor does not change input to uppercase.
– On the CURRENT SPUFI DEFAULTS panel, change MAX CHAR FIELD to 32767, so that you will be able

to see complete XML documents.

Procedure

1. Create a table named MYCUSTOMER that contains an XML column:

CREATE TABLE MYCUSTOMER (Cid BIGINT, INFO XML)#

2. Create an index over XML data. For the purposes of this tutorial, all XML documents that you store
in the INFO column have a root element named customerinfo with an attribute named Cid. Create a
unique index on the Cid attribute:

CREATE UNIQUE INDEX MYCUT_CID_XMLIDX ON MYCUSTOMER(INFO)
GENERATE KEY USING XMLPATTERN
 'declare default element namespace "http://posample.org"; /customerinfo/@Cid'
AS SQL DECFLOAT#

The XML pattern that defines the index is case-sensitive. The element and attribute names in the XML
pattern must match the element and attribute names in the XML documents exactly. In this example,
customerinfo is the element and Cid is the attribute.

Chapter 1. Overview of pureXML 15

3. Insert three XML documents into the MYCUSTOMER table that you created in step 1 by issuing the
following INSERT statements:

INSERT INTO MYCUSTOMER (CID, INFO) VALUES (1000,
'<customerinfo xmlns="http://posample.org" Cid="1000">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type="work">416-555-1358</phone>
</customerinfo>')#

INSERT INTO MYCUSTOMER (CID, INFO) VALUES (1002,
'<customerinfo xmlns="http://posample.org" Cid="1002">
 <name>Jim Noodle</name>
 <addr country="Canada">
 <street>25 EastCreek</street>
 <city>Markham</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N9C 3T6</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
</customerinfo>')#

INSERT INTO MYCUSTOMER (CID, INFO) VALUES (1003,
'<customerinfo xmlns="http://posample.org" Cid="1003">
 <name>Robert Shoemaker</name>
 <addr country="Canada">
 <street>1596 Baseline</street>
 <city>Aurora</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N8X 7F8</pcode-zip>
 </addr>
 <phone type="work">905-555-2937</phone>
</customerinfo>')#

You can confirm that the records were successfully inserted by issuing the following query:

SELECT CID, INFO FROM MYCUSTOMER#

4. Update the XML documents that are stored in an XML column. Issue the following UPDATE statement
to add a cell phone number to the XML document for which the CID column value is 1002. To change
individual items in an XML column, you must replace the entire column.

UPDATE MYCUSTOMER SET INFO =
'<customerinfo xmlns="http://posample.org" Cid="1002">
 <name>Jim Noodle</name>
 <addr country="Canada">
 <street>25 EastCreek</street>
 <city>Markham</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N9C 3T6</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 <phone type="cell">905-554-7254</phone>
 </customerinfo>'
WHERE CID=1002#

You can confirm that the XML document was updated by issuing the following query:

SELECT CID, INFO FROM MYCUSTOMER
 WHERE CID=1002#

5. Delete any rows from the MYCUSTOMER table for which the customer document in the INFO column
contains a cell phone number. Issue the following DELETE statement, which contains an XMLEXISTS
predicate with an XQuery expression, to specify the documents that you want to delete.

DELETE FROM MYCUSTOMER
WHERE XMLEXISTS (
 'declare default element namespace "http://posample.org";
 /customerinfo/phone[@type="cell"]' PASSING INFO)#

16 Db2 11 for z/OS: pureXML Guide

You can confirm that the XML document was deleted by issuing the following query:

SELECT COUNT(*) FROM MYCUSTOMER
WHERE CID = 1002#

Confirm that the resulting value is 0.
6. Query XML data.

You can retrieve an entire XML document, or you can retrieve a portion of an XML document.

• Issue the following SELECT statement to retrieve the entire XML document that has a CID value of
1000:

SELECT CID, INFO FROM MYCUSTOMER
 WHERE CID=1000#

• Issue the following SELECT statement with the XMLQUERY function to retrieve the name element
from each XML document in the MYCUSTOMER table.

SELECT XMLQUERY (
 'declare default element namespace "http://posample.org";
 for $d in $doc/customerinfo
 return <out>{$d/name}</out>'
 passing INFO as "doc")
 FROM MYCUSTOMER as c
 WHERE XMLEXISTS ('declare default element namespace "http://posample.org";
 $i/customerinfo/addr[city="Toronto"]' passing c.INFO as
"i")#

The SELECT statement returns the following result:

<out xmlns="http://posample.org"><name>Kathy Smith</name></out>

7. Update part of an XML document. Issue the following UPDATE statement, which includes the
XMLMODIFY function, to change the address from 5 Rosewood to 42 Rosedale for the customer with
customer ID 1000 in the MYCUSTOMER table.

UPDATE MYCUSTOMER
 SET INFO = XMLMODIFY(
 'declare default element namespace "http://posample.org";
 replace value of node /customerinfo/addr/street
 with "42 Rosedale"')
 WHERE CID=1000#

You can confirm that the XML document was updated by issuing the following query:

SELECT CID, INFO FROM MYCUSTOMER
 WHERE CID = 1000#

Related information:

“Creation of tables with XML columns” on page 29
“Deletion of rows with XML documents from tables” on page 40
Chapter 3, “XML data indexing,” on page 85
“Insertion of rows with XML column values” on page 35
“Retrieving XML data” on page 62
“Updates of XML columns” on page 37
DSNTEP2 and DSNTEP4 (Db2 Application programming and SQL)
Executing SQL by using SPUFI (Db2 Application programming and SQL)

Chapter 1. Overview of pureXML 17

https://www.ibm.com/docs/en/SSEPEK_11.0.0/apsg/src/tpc/db2z_dsntep24.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/apsg/src/tpc/db2z_executesqlspufi.html

Prerequisites for using pureXML
If you do not do XML schema validation using Db2, use of XML requires no special prerequisites. However,
if you do XML schema validation using Db2, you need to install extra software.

If you plan to validate XML documents against XML schemas by using the DSN_XMLVALIDATE function or
by using an XML schema type modifier on XML columns, you need an XML schema repository.

Related tasks
Additional steps for enabling the stored procedures and objects for XML schema support (Db2 Installation
and Migration)
Installing the as part of a installation (Db2 Application Programming for Java)

Setting up the XML schema repository
Before you can do XML schema validation on your XML documents, you need to set up an XML schema
repository.

Before you begin
Besides Db2 for z/OS, XML schema repository setup requires that the following software is installed and
configured:

• Workload Manager for z/OS (WLM)
• z/OS XML System Services
• Java 2 Technology Edition, V5 or later, 31-bit version
• IBM Data Server Driver for JDBC and SQLJ

About this task
Setting up an XML schema repository involves defining a set of Db2 tables and indexes that store XML
schema information, and setting up a set of stored procedures that operate on the XML schemas that are
stored in the tables.

Procedure
To set up the XML schema repository:
1. Define the XML schema repository tables and indexes.

The table spaces are:

• SYSIBM.SYSXSR
• SYSIBM.SYSXSRA1
• SYSIBM.SYSXSRA2
• SYSIBM.SYSXSRA3
• SYSIBM.SYSXSRA4

The tables are:

• SYSIBM.XSRANNOTATIONINFO
• SYSIBM.XSRCOMPONENT
• SYSIBM.XSROBJECTCOMPONENTS
• SYSIBM.XSROBJECTGRAMMAR
• SYSIBM.XSROBJECTHIERARCHIES
• SYSIBM.XSROBJECTPROPERTY
• SYSIBM.XSROBJECTS

18 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_enablexmlstprocs.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_enablexmlstprocs.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_jccinstallwithdb2z.html

• SYSIBM.XSRPROPERTY

The indexes are:

• SYSIBM.XSRANNINFOIDX
• SYSIBM.XSRCOMP01
• SYSIBM.XSRCOMP02
• SYSIBM.XSRHIER01
• SYSIBM.XSRHIER02
• SYSIBM.XSROBJ01
• SYSIBM.XSROBJ02
• SYSIBM.XSROBJ03
• SYSIBM.XSROBJ04
• SYSIBM.XSRXCC01
• SYSIBM.XSRXCP01
• SYSIBM.XSRXOG01
• SYSIBM.XSRXOP01

Installation job DSNTIJRT invokes a program that executes the CREATE DATABASE, CREATE
TABLESPACE, CREATE TABLE and CREATE INDEX statements for the XML schema repository tables
and indexes. After the installation process customizes job DSNTIJRT, you can run DSNTIJRT without
further modification to create those tables and indexes.

Important: Do not drop these objects after you begin to do XML schema validation. Doing so can cause
unexpected behavior.

2. Define the WLM environment and startup procedure for the C language XML schema repository stored
procedures.

3. Define the WLM environment and startup procedure for the Java language XML schema repository
stored procedure.

4. Define the XML schema repository stored procedures to Db2.
5. Bind the packages for the XML schema repository stored procedures.

Installation job DSNTIJRT invokes a program that binds the packages for the XML schema repository
stored procedures. After the installation process customizes job DSNTIJRT, you can run DSNTIJRT
without further modification to bind the packages.

6. Bind the packages for the IBM Data Server Driver for JDBC and SQLJ.
7. Test the XML schema repository setup.

Defining the WLM environment and JCL startup procedure for C language XML
schema repository stored procedures
The XML schema validation stored procedures that are written in C require their own WLM environment
and a JCL procedure for starting that WLM environment.

About this task
The C language stored procedures that use this WLM environment and JCL procedure are
XSR_ADDSCHEMADOC, XSR_REGISTER, and XSR_REMOVE.

One of the tasks that installation job DSNTIJRW performs is to call a program that installs a WLM
environment with the default name of DSNWLM_XML. The installation process configures DSNWLM_XML
so that you can use it to run the XML schema repository stored procedures. One of the tasks that
installation job DSNTIJMV performs is to install a WLM startup procedure named ssnmWLMX for that WLM
environment.

Chapter 1. Overview of pureXML 19

Follow this process if the predefined settings do not work for you, and you need to make changes to the
WLM environment or startup procedure.

Procedure
To define the WLM environment and JCL startup procedure for C language XML schema repository stored
procedures:
1. In a TSO session, start the IWMARIN0 utility.

For example, in the ISPF Command Shell, type:

EXEC 'SYS1.SBLSCLI0(IWMARIN0)'

2. In the WLM ISPF Choose Service Definition menu, choose option 1 or option 2, depending on your
current WLM service definition setup. See the WLM documentation on service definitions for details.

3. In the WLM ISPF Definition Menu panel, choose option 9: Application Environments.
4. In the Application Environment Selection List panel, type 3 (Modify) next to DSNWLM_XML.
5. In the Modify an Application Environment panel, you see values like these.

 Modify an Application Environment
 Command ===> __

 Application Environment Name . : DSNWLM_XML
 Description DB2-SUPPLIED WLM ENVIRONMENT
 Subsystem Type DB2
 Procedure Name DSNWLMX
 Start Parameters DB2SSN=&IWMSSNM,APPLENV='DSNWLM_XML'
 __

 Starting of server address spaces for a subsystem instance:
 1 1. Managed by WLM
 2. Limited to a single address space per system
 3. Limited to a single address space per sysplex

The meanings of the parameters are:

Subsystem Type
Specify DB2.

Procedure Name
Specify a name that matches the name of the JCL startup procedure for the stored procedure
address spaces that are associated with this application environment.

Start Parameters
If the Db2 subsystem in which the stored procedure runs is not in a Sysplex, specify a DB2SSN
value that matches the name of that Db2 subsystem. If the same JCL is used for multiple Db2
subsystems, specify DB2SSN=&IWMSSNM. Specify an APPLENV value that matches the value that
you specify in the Application Environment Name field.

Starting of server address spaces for a subsystem instance
Specify 1 (Managed by WLM) or 2 (Limited to a single address space per system).

6. Modify the JCL startup procedure for the stored procedure address spaces that are associated with the
WLM application environment.

The default JCL startup procedure for DSNWLM_XML looks like this one.

//DSNWLMX PROC APPLENV=DSNWLM_XML, 1
// DB2SSN=DSN,RGN=0K,NUMTCB=40 2
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM='&DB2SSN,&NUMTCB,&APPLENV'
//STEPLIB DD DISP=SHR,DSN=CEE.SCEERUN 3
// DD DISP=SHR,DSN=DSNB10.SDSNEXIT
// DD DISP=SHR,DSN=DSNB10.SDSNLOAD
//CEEDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

20 Db2 11 for z/OS: pureXML Guide

Notes:

 1 In this line, the procedure name must be the same as the Procedure Name value in
the Create an Application Environment or Modify an Application Environment panel. The
APPLENV value must be the same as the Application Environment Name value in the
Create an Application Environment or Modify an Application Environment panel. If the
Start Parameters field in the Create an Application Environment or Modify an Application
Environment panel contains an APPLENV parameter, the APPLENV parameter value in the
Start Parameters field value overrides the value in the JCL startup procedure. NUMTCB
should be between 40 and 60.

 2 In this line, the DB2SSN value must be the same as your Db2 for z/OS subsystem name.
NUMTCB should be between 40 and 60.

 3 STEPLIB specifies the data sets that are necessary for running the stored procedures. At
a minimum, you need the Language Environment® run time data set, SCEERUN, and the
SDSNLOAD data set, which contains the DSNX9WLM program and the load modules for the
C language XML schema repository stored procedures.

Related tasks
Setting up the Db2 core WLM environments during installation (Db2 Installation and Migration)
Related information
Setting up a Service Definition (z/OS MVS Planning: Workload Management)

Defining the WLM environment and JCL startup procedure for the Java
language XML schema repository stored procedure
The XML schema validation stored procedure, XSR_COMPLETE, which is written in Java, can share a WLM
environment with other Java routines. You need a JCL procedure that is tailored for starting that WLM
environment.

About this task
One of the tasks that installation job DSNTIJRW performs is to call a program that installs a
WLM environment with the default name of DSNWLM_JAVA. The installation process configures
DSNWLM_JAVA so that you can use it to run the XML schema repository stored procedure
XSR_COMPLETE. One of the tasks that installation job DSNTIJMV performs is to install a WLM startup
procedure named ssnmWLMJ for that WLM environment.

You only need to follow this process if the predefined settings do not work for you, and you need to make
changes to the WLM environment or startup procedure.

Procedure
To set up the WLM environment and JCL startup procedure for XSR_COMPLETE, follow these steps:
1. In a TSO session, start the IWMARIN0 utility.

For example, in the ISPF Command Shell, type:

EXEC 'SYS1.SBLSCLI0(IWMARIN0)'

2. In the WLM ISPF Choose Service Definition menu, choose option 1 or option 2, depending on your
current WLM service definition setup. See the WLM documentation on service definitions for details.

3. In the Application Environment Selection List panel, type 3 (Modify) next to DSNWLM_JAVA.
4. In the WLM ISPF Definition Menu panel, choose option 9: Application Environments.
5. In the Modify an Application Environment panel, you see values like these.

Chapter 1. Overview of pureXML 21

https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_dsntijrw.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaw100/setsd.htm

 Application-Environment Notes Options Help
 --
 Modify an Application Environment
 Command ===> __

 Application Environment Name . : DSNWLM_JAVA
 Description Environment for Java procedures
 Subsystem Type DB2
 Procedure Name DSNWLMJ
 Start Parameters DB2SSN=&IWMSSNM,APPLENV='DSNWLM_JAVA'
 __

 Starting of server address spaces for a subsystem instance:
 1 1. Managed by WLM
 2. Limited to a single address space per system
 3. Limited to a single address space per sysplex

Subsystem Type
Specify DB2.

Procedure Name
Specify a name that matches the name of the JCL startup procedure for the stored procedure
address spaces that are associated with this application environment.

Start Parameters
If the Db2 subsystem in which the stored procedure runs is not in a Sysplex, specify a DB2SSN
value that matches the name of that Db2 subsystem. If the same JCL is used for multiple Db2
subsystems, specify DB2SSN=&IWMSSNM. Specify an APPLENV value that matches the value that
you specify in the Application Environment Name field.

Starting of server address spaces for a subsystem instance
Specify 1 (Managed by WLM) or 2 (Limited to a single address space per system).

6. Modify the pre-defined JCL startup procedure for the stored procedure address spaces that are
associated with the WLM application environment.

The installation process creates a JCL startup procedure similar to this one.

//DSNWLMJ PROC APPLENV=DSNWLM_JAVA, 1
// DB2SSN=DSN,RGN=0K,NUMTCB=5 2
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT, 3
// PARM='&DB2SSN,&NUMTCB,&APPLENV'
//STEPLIB DD DISP=SHR,DSN=CEE.SCEERUN 4
// DD DISP=SHR,DSN=DSNB10.SDSNEXIT
// DD DISP=SHR,DSN=DSNB10.SDSNLOAD
// DD DISP=SHR,DSN=DSNB10.SDSNLOD2
//JAVAENV DD DISP=SHR, 5
// DSN=DSNB10.DSNWLMJ.JAVAENV
//JSPDEBUG DD SYSOUT=* 6
//JAVAOUT DD PATH='/tmp/javaout.txt', 7
// PATHOPTS=(ORDWR,OCREAT,OAPPEND),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP,SIROTH,SIWOTH)
//JAVAERR DD PATH='/tmp/javaerr.txt',
// PATHOPTS=(ORDWR,OCREAT,OAPPEND),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP,SIROTH,SIWOTH)

Notes:

 1 In this line, the procedure name must be the same as the Procedure Name value in
the Create an Application Environment or Modify an Application Environment panel. The
APPLENV value must be the same as the Application Environment Name value in the
Create an Application Environment or Modify an Application Environment panel. If the
Start Parameters field in the Create an Application Environment or Modify an Application
Environment panel contains an APPLENV parameter, the APPLENV parameter value in the
Start Parameters field value overrides the value in the JCL startup procedure.

 2 In this line, the DB2SSN value must be the same as your Db2 for z/OS subsystem name. The
maximum value of NUMTCB should be 5.

22 Db2 11 for z/OS: pureXML Guide

 3 The EXEC statement specifies program DSNX9WLM, which is the WLM address space
initialization program for a 31-bit JVM. If your JAVA_HOME variable specifies a path to
a 64-bit JVM, such as /usr/lpp/java/8.0_64, you need to change DSNX9WLM in the EXEC
statement to DSNX9WJM.

 4 STEPLIB specifies the Db2 and Language Environment data sets that are necessary for
running the stored procedures. At a minimum, you need the Language Environment run time
data set, SCEERUN, and the SDSNLOAD data set, which contains the DSNX9WLM program.
SDSNLOD2 contains the JDBC and SQLJ dynamic link libraries (DLLs).

 5 JAVAENV specifies a data set that contains Language Environment run time options for
Java stored procedures. The presence of this DD statement indicates to Db2 that the WLM
environment is for Java routines. This data set must contain the environment variable
JAVA_HOME. This environment variable indicates to Db2 that the WLM environment is for
Java routines. JAVA_HOME also specifies the highest-level directory in the set of directories
that containing the SDK for Java.

 6 Specifies the destination to which Db2 puts information that you can use to debug your
stored procedure. The information that Db2 collects is for assistance in debugging setup
problems, and should be used only under the direction of IBM Software Support. You should
comment out this DD statement during production.

 7 Specifies HFS files into which the Java run time environment puts information that you can
use to debug your stored procedure. This information is for assistance in debugging setup
problems. You should comment out these DD statements during production.

7. Modify the Language Environment run time options data set (JAVAENV data set), _CEE_ENVFILE file,
and JVMPROPS file that the installation process created.

The default names for those data sets are:

Data set type Default name

JAVAENV DSNB10.DSNWLMJ.JAVAENV

_CEE_ENVFILE /usr/lpp/db2b10/base/classes/dsnenvfile.txt

JVMPROPS /usr/lpp/java/properties/dsnjvmsp

The name of the Language Environment run time options data set must be the same as the data set
name in the JAVAENV DD statement in the JCL startup procedure for the stored procedure address
spaces that are associated with the WLM application environment.

The installation process uses JCL similar to this to allocate and populate the Language Environment
run time options data set.

Do not include sequence numbers in any of the input data sets. There should be no text after column
72.

//DSNTIJJ EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD DSN=DSNB10.DSNWLMJ.JAVAENV, 1
// DISP=(,CATLG,DELETE),
// UNIT=SYSDA,SPACE=(TRK,1),
// DCB=(RECFM=VB,LRECL=255)
//SYSUT1 DD *
ENVAR("_CEE_ENVFILE=/usr/lpp/db2b10/base/classes/dsnenvfile.txt", 2
 "DB2_BASE=/usr/lpp/db2b10/base", 3
 "JCC_HOME=/usr/lpp/db2b10/jdbc", 4
 "JAVA_HOME=/usr/lpp/java150/J5.0", 5
 "JVMPROPS=/usr/lpp/java/properties/dsnjvmsp"), 6
MSGFILE(JSPDEBUG,,,,ENQ), 7
XPLINK(ON) 8

Chapter 1. Overview of pureXML 23

The installation process uses JCL similar to this to allocate and populate the _CEE_ENVFILE file.

//DSNTIJR EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD PATH='/usr/lpp/db2b10/base/classes/dsnenvfile.txt', 9
// FILEDATA=TEXT,
// PATHDISP=(KEEP,DELETE),
// PATHOPTS=(OWRONLY,OCREAT,OEXCL),
// PATHMODE=(SIRWXU,SIRGRP)
//SYSUT1 DD *

CLASSPATH=/usr/include/java_classes/gxljapi.jar 10
LIBPATH=/usr/lib/java_runtime 11
STEPLIB=DSNB10.SDSNLOAD
12

The installation process uses JCL similar to this to allocate and populate the JVMPROPS file.

//DSNTIJS EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD PATH='/usr/lpp/java/properties/dsnjvmsp', 13
// FILEDATA=TEXT,
// PATHDISP=(KEEP,DELETE),
// PATHOPTS=(OWRONLY,OCREAT,OEXCL),
// PATHMODE=(SIRWXU,SIRGRP)
//SYSUT1 DD *
Sets the initial size of middleware heap within non-system heap
#-Xms64M
Sets the maximum size of nonsystem heap
#-Xmx128M

Notes:

 1 This is the name of the Language Environment run time options data set.

 2 This line and the ones that follow it define the content of the Language Environment
run time options data set. Change any data set names that differ from the ones in your
environment.

The content of the Language Environment run time options data set can have a length
of no more than 245 bytes. If the length of the ENVAR options string makes the length
of the content of the run time options data set greater than 245 bytes, you need to use
a _CEE_ENVFILE file, whose name you specify in the ENVAR parameter. _CEE_ENVFILE
identifies an additional file in which you can include more options. You can put all of your
run time options in the _CEE_ENVFILE file, or put some options in the ENVAR parameter,
and some in the _CEE_ENVFILE file.

 3 The value of DB2_BASE is the highest-level directory in the set of HFS directories that
contain Db2 for z/OS code.

 4 The value of JCC_HOME is the highest-level directory in the set of directories that contain
the JDBC driver.

 5 The value of JAVA_HOME is the highest-level directory in the set of directories that contain
the SDK for Java. The SYSPROC.XSR_COMPLETE stored procedure requires SDK for z/OS,
Java 2 Technology Edition, V5 or later.

 6 The value of JVMPROPS is the name of a z/OS UNIX System Services file that contains
startup options for the JVM in which the stored procedure runs.

 7 MSGFILE specifies the DD name of a data set in which Language Environment puts run
time diagnostics. All subparameters in the MSGFILE parameter are optional. The first
subparameter is the DD name.

 8 XPLINK(ON) is required.

 9 The value of PATH must be the same as the value of _CEE_ENVFILE.

24 Db2 11 for z/OS: pureXML Guide

 10 CLASSPATH must include the path for the Java class that contains the JAR files for z/OS
XML System Services XML schema registration (gxljapi.jar).

 11 LIBPATH must include the path for the Java native libraries.

 12 STEPLIB must include the Db2 for z/OS run time library (SDSNLOAD).

 13 The value of PATH must be the same as the value of JVMPROPS.

Related concepts
WLM address space startup procedure for Java routines (Db2 Application Programming for Java)
Related information
Setting up a Service Definition (z/OS MVS Planning: Workload Management)

Defining the XML schema repository stored procedures to Db2
You execute CREATE PROCEDURE statements to define the XML schema repository stored procedures to
Db2.

Before you begin
• Run job DSNTIJSG during installation to create the stored procedures.

About this task
The CREATE PROCEDURE statements for the XML schema repository stored procedures are in a program
that installation job DSNTIJRT calls.

The C language stored procedures are:

• SYSPROC.XSR_REGISTER
• SYSPROC.XSR_ADDSCHEMADOC
• SYSPROC.XSR_REMOVE

The Java language stored procedure is SYSPROC.XSR_COMPLETE.

Binding the IBM Data Server Driver for JDBC and SQLJ packages for the XML
schema repository
The XSR_COMPLETE XML schema repository stored procedure is a Java stored procedure. It requires the
IBM Data Server Driver for JDBC and SQLJ packages.

About this task
You need to bind the following sets of IBM Data Server Driver for JDBC and SQLJ packages:

• The NULLID collection ID
• The SYSXSR collection ID

Procedure
To bind the IBM Data Server Driver for JDBC and SQLJ packages for the XML schema repository:
1. In z/OS UNIX System Services, execute the DB2Binder utility to bind the IBM Data Server Driver for

JDBC and SQLJ under the SYSXSR collection ID.

The DB2Binder command that you need to use looks like this:

java com.ibm.db2.jcc.DB2Binder -url url
-user user-id -collection SYSXSR -password password -action replace

Chapter 1. Overview of pureXML 25

https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_javaroutinewlmstartupproc.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaw100/setsd.htm
https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_dsntijsg.html

For example:

java com.ibm.db2.jcc.DB2Binder -url myserver.svl.ibm.com:446/MYDB
-user myid -collection SYSXSR -password mypass -action replace

You need to make these substitutions when you run DB2Binder.

Value in example Value to substitute

myserver.svl.ibm.com:446/
MYDB

The server, port, and location name values for the Db2 subsystem
on which you are setting up the XML schema repository.

myid Your user ID

mypass Your password

2. In z/OS UNIX System Services, execute the DB2Binder utility to bind the IBM Data Server Driver for
JDBC and SQLJ under the NULLID collection ID.

The DB2Binder command looks like this.

java com.ibm.db2.jcc.DB2Binder -url jdbc:db2://myserver.svl.ibm.com:446/MYDB
-user myid -collection NULLID -password mypass -action replace

You need to make the same substitutions as in step 1.

Related reference
DB2Binder utility (Db2 Application Programming for Java)

Testing the XML schema repository setup
After you set up the XML schema repository, perform some tests to ensure that it is operating correctly.
You need to test whether the WLM environment, the Java stored procedure environment, and the XML
schema repository stored procedures are working correctly.

Procedure
Run installation job DSNTIJRV.

The following JCL uses program DSNTRVFY to check the XSR stored procedures:

//DSNTJVFY EXEC PGM=DSNTRVFY,
// PARM='DB2SSN(DSN) ROUTINE(DD:SYSIN)'
//DBRMLIB DD DSN=DSNB10.SDSNDBRM,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(32000,(30,30)),DCB=(RECFM=VB,LRECL=133)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 SYSPROC.XSR_REGISTER
 SYSPROC.XSR_ADDSCHEMADOC
 SYSPROC.XSR_COMPLETE
 SYSPROC.XSR_REMOVE

In this example, the PARM passed to program DSNTRVFY directs it to verify the routines specified in
ddname SYSIN.

In order to test your XML schema repository, job DSNTIJRV might generate error SQLCODEs in WLM
task logs and trace records that can be ignored. Examine the ddname SYSPRINT summary reported by
message DSNT040I to determine whether your XML schema repository is successfully set up. Reasons for
failures can also be found in ddname SYSPRINT.

Related concepts
Job DSNTIJRV (Db2 Installation and Migration)
Related tasks
Setting up a WLM application environment for stored procedures during installation (Db2 Installation and
Migration)

26 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_r0023708.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_jobdsntijrv.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_setupwlmenvironment.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_setupwlmenvironment.html

Related information
DSNT040I (Db2 Messages)

Chapter 1. Overview of pureXML 27

https://www.ibm.com/docs/en/SSEPEK_11.0.0/msgs/src/tpc/dsnt040i.html

28 Db2 11 for z/OS: pureXML Guide

Chapter 2. Working with XML data
Db2 pureXML support lets you create tables, store and retrieve XML data in Db2 tables, and validate XML
data.

Creation of tables with XML columns
To create tables with XML columns, you specify columns with the XML data type in the CREATE TABLE
statement. A table can have one or more XML columns.

You do not specify a length when you define an XML column. There is no architectural limit on the size of
an XML value in a database. However, textual XML data that is exchanged with a Db2 database is limited
to 2 GB-1, so the effective limit of an XML column is 2 GB-1.

Like a LOB column, an XML column holds only a descriptor of the column. The data is stored separately.

When you define an XML column, you can add an XML type modifier. An XML type modifier associates a set
of one or more XML schemas with the XML data type. You can use an XML type modifier to cause all XML
documents that are stored in an XML column to be validated according to one of the XML schemas that is
specified in the type modifier.

When you create a table with an XML column in a universal table space, Db2 maintains multiple versions
of XML documents during update operations, to enhance concurrency and memory usage.

Example: A table for customer data contains two XML columns. The definition looks like this:

CREATE TABLE CUSTOMER (CID BIGINT NOT NULL PRIMARY KEY,
 INFO XML,
 HISTORY XML)

Example: A table for customer data contains an XML column named CONTENT. The documents in
the XML column need to be validated according to XML schema SYSXSR.PO1, which has already been
registered. The definition looks like this:

CREATE TABLE PURCHASEORDERS(
 ID INT NOT NULL,
 CONTENT XML(XMLSCHEMA ID SYSXSR.PO1))

Related concepts
XML data type
The XML data type is used to define columns of a table that store XML values. This data type provides the
ability to store well-formed XML documents in a database.
XML versions
Multiple versions of an XML document can coexist in an XML table. The existence of multiple versions
of an XML document can lead to improved concurrency through lock avoidance. In addition, multiple
versions can save real storage by avoiding a copy of the old values in the document into memory in some
cases.

Altering tables with XML columns
To add XML columns to existing tables, you specify columns with the XML data type in the ALTER TABLE
statement with the ADD COLUMN clause. A table can have one or more XML columns.

To alter an existing XML column to include an XML type modifier or remove an XML type modifier, use
ALTER TABLE.

When you add XML columns to a table, the Db2 database server implicitly creates a table space and table
for each XML column. The data for an XML column is stored in the corresponding table.

© Copyright IBM Corp. 2007, 2021 29

An XML type modifier associates a set of one or more XML schemas with the XML data type. You can
use an XML type modifier to cause all XML documents that are stored in an XML column to be validated
according to one of the XML schemas that is specified in the type modifier. When you perform either
of the following actions, Db2 puts the XML table space that corresponds to the altered XML column in
CHECK-pending status:

• Add an XML type modifier to an existing XML column that does not have a type modifier but contains
XML data

• Remove an XML schema from an existing XML type modifier that has more than one XML schema

When the XML table space is in CHECK-pending status, you need to run CHECK DATA to validate the
values of the altered XML column for existing rows. If you add an XML schema to the type modifier of an
existing XML column, Db2 does not put the XML table space in CHECK-pending status, and values of the
altered column in the existing rows are not revalidated.

When you add an XML column to a table that is in a universal table space, Db2 maintains multiple versions
of XML documents during update operations, to enhance concurrency and memory usage.

Example: A table contains customer data that contains two XML columns. The definition looks like this:

CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY,
 Info XML,
 History XML)

Create a table named MyCustomer that is a copy of Customer, and add an XML column to describe
customer preferences:

CREATE TABLE MyCustomer LIKE Customer;
ALTER TABLE MyCustomer ADD COLUMN Preferences XML;

Example: A table for customer data contains an XML column named CONTENT. The definition looks like
this:

CREATE TABLE PURCHASEORDERS(
 ID INT NOT NULL,
 CONTENT XML)

The table contains several XML documents. The documents in the XML column need to be validated
according to XML schema SYSXSR.PO1, which has already been registered. Alter the XML column to add
an XML type modifier that specifies SYSXSR.PO1:

ALTER TABLE PURCHASEORDERS
 ALTER CONTENT
 SET DATA TYPE XML(XMLSCHEMA ID SYSXSR.PO1)

The table space that contains the XML documents for the CONTENT column is put in CHECK-pending
status. You need to run CHECK DATA against the XML table space to remove the CHECK-pending status.

Related concepts
Creation of tables with XML columns
To create tables with XML columns, you specify columns with the XML data type in the CREATE TABLE
statement. A table can have one or more XML columns.
XML schema validation with an XML type modifier
You can automate XML schema validation by adding an XML type modifier to an XML column definition.
Storage structure for XML data
The storage structure for XML data is similar to the storage structure for LOB data.
XML versions
Multiple versions of an XML document can coexist in an XML table. The existence of multiple versions
of an XML document can lead to improved concurrency through lock avoidance. In addition, multiple

30 Db2 11 for z/OS: pureXML Guide

versions can save real storage by avoiding a copy of the old values in the document into memory in some
cases.

Storage structure for XML data
The storage structure for XML data is similar to the storage structure for LOB data.

As with LOB data, the base table that contains an XML column exists in a different table space from the
table that contains the XML data.

The storage structure for the XML data depends on the type of table space that contains the base table, as
described in the following table.

Table 8. Organization of base table spaces and corresponding XML table spaces

Base table space organization
XML table space
organization Remarks

Partition-by-growth“1” on page 31 Partition-by-growth An XML document can span more
than one partition. The base table
space and the XML table space grow
independently.

partition-by-range “1” on page 31 partition-by-range If a base table row moves to a
new partition, the XML document also
moves to a new partition.

Partitioned (non-UTS) partition-by-range If a base table row moves to a
new partition, the XML document also
moves to a new partition.

This table space type is deprecated.

Segmented (non-UTS) Partition-by-growth This table space type is deprecated.

Simple Partition-by-growth This table space type is deprecated.

Note:

1. This table space organization supports XML versions.

The following figure demonstrates the relationship between segmented table spaces for base tables with
XML columns and the corresponding XML table spaces and tables. The relationships are similar for simple
base table spaces and partition-by-growth base table spaces. This figure represents XML columns that do
not support XML versions.

Chapter 2. Working with XML data 31

Figure 2. XML storage structure for a base table in a segmented table space

The following figure demonstrates the relationship between partitioned table spaces for base tables
with XML columns and the corresponding XML table spaces and tables. The relationships are similar
for partition-by-range base table spaces. This figure represents XML columns that do not support XML
versions.

32 Db2 11 for z/OS: pureXML Guide

Figure 3. XML storage structure for a base table in a partitioned table space

When you create a table with XML columns or ALTER a table to add XML columns, the Db2 database
server implicitly creates the following objects:

• A table space and table for each XML column. The data for an XML column is stored in the
corresponding table.

Db2 creates the XML table space and table in the same database as the base table that contains the
XML column. The XML table space is in the Unicode UTF-8 encoding scheme.

If the base table contains XML columns that support XML versions, each XML table contains two more
columns than an XML table for an XML column that does not support XML versions. Those columns are
named START_TS and END_TS, and they have the BINARY(8) data type if the page format is basic 6-byte
format and BINARY(10) data type if the page format is extended 10-byte format. START_TS contains the
RBA or LRSN of the logical creation of an XML record. END_TS contains the RBA or LRSN of the logical

Chapter 2. Working with XML data 33

deletion of an XML record. START_TS and END_TS identify the rows in the XML table that make up a
version of an XML document.

• An document ID column in the base table, named DB2_GENERATED_DOCID_FOR_XML, with data type
BIGINT.

DB2_GENERATED_DOCID_FOR_XML holds a unique document identifier for the XML columns in a row.
One DB2_GENERATED_DOCID_FOR_XML column is used for all XML columns.

The DB2_GENERATED_DOCID_FOR_XML column has the GENERATED ALWAYS attribute. Therefore, a
value in this column cannot be NULL.

If the base table space supports XML versions, the length of the XML indicator column is eight bytes
longer that the XML indicator column in a base table space that does not support XML versions.

• An index on the DB2_GENERATED_DOCID_FOR_XML column.

This index is known as a document ID index.
• An index on each XML table that Db2 uses to maintain document order, and map logical node IDs to

physical record IDs.

This index is known as a node ID index. The node ID index is an extended, non-partitioning index.

If the base table space supports XML versions, the index key for the node ID index contains two more
columns than the index key for a node ID index for a base table space that does not support XML
versions. Those columns are named START_TS and END_TS, and they have the BINARY(8) data type.

You can perform limited SQL operations,on the implicitly created objects, such as altering the following
attributes of an XML table space:

• SEGSIZE
• BUFFERPOOL
• STOGROUP
• PCTFREE
• GBPCACHE

You can also the any except for the following attributes of the document ID index or node ID index:

• CLUSTER
• PADDED
• Number of columns (ADD COLUMN is not allowed)

For a complete list of operations that you can perform on these objects, see ALTER TABLESPACE (Db2
SQL), ALTER TABLE (Db2 SQL), and ALTER INDEX (Db2 SQL).

Related concepts
Access methods with XML indexes
Several data access methods use XML indexes.
XML versions
Multiple versions of an XML document can coexist in an XML table. The existence of multiple versions
of an XML document can lead to improved concurrency through lock avoidance. In addition, multiple
versions can save real storage by avoiding a copy of the old values in the document into memory in some
cases.
XML table space implicit creation (Db2 Administration Guide)

Limitation of XML virtual storage usage
You can use the XMLVALA and XMLVALS subsystem parameters to limit the amount of Db2 virtual storage
that is used for XML processing.

Because XML values are defined without a maximum size, Db2 cannot estimate the amount of memory
that it needs for processing SQL/XML and XQuery queries before run time. Db2 allocates virtual storage

34 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_altertable.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/admin/src/tpc/db2z_howimplicitlycreatexmltablespace.html

at run time based on the size of the XML data. For large XML data, the amount of virtual storage that Db2
requires can grow very large.

If your Db2 subsystem encounters storage constraints because XML values are using too much memory,
set the XMLVALA and XMLVALS subsystem parameters:

• To specify the maximum amount of memory, in KB, that Db2 uses for storing XML values for each user,
set XMLVALA. The default is 204800 KB.

• To specify the maximum amount of memory, in MB, that Db2 uses for storing XML values for the entire
subsystem, set XMLVALS. The default is 10240 MB.

Related concepts
Storage structure for XML data
The storage structure for XML data is similar to the storage structure for LOB data.
Related reference
USER XML VALUE STG field (XMLVALA subsystem parameter) (Db2 Installation and Migration)
SYSTEM XML VALUE STG field (XMLVALS subsystem parameter) (Db2 Installation and Migration)

Insertion of rows with XML column values
To insert rows into a table that contains XML columns, you can use the SQL INSERT statement.

The documents that you insert into XML columns must be well-formed XML documents, as defined in
the XML 1.0 specification. A document node will be created implicitly if one does not already exist. The
application data type can be XML (XML AS BLOB, XML AS CLOB, XML AS DBCLOB), character, or binary.

Recommendation: Insert XML data from host variables, rather than literals, so that the Db2 database
server can use the host variable data type to determine some of the encoding information.

XML data in an application can be in textual XML format or binary XML format (Extensible Dynamic Binary
XML Db2 Client/Server Binary XML Format). Binary XML format is valid only for JDBC, SQLJ, and ODBC
applications. When you insert the data into an XML column, it must be converted to its XML hierarchical
format. The Db2 database server performs this operation implicitly when XML data is inserted directly
from a host variable into an XML column. Alternatively, you can invoke the XMLPARSE function explicitly
when you perform the insert operation, to convert the data to the XML hierarchical format.

During document insertion, you can validate the XML document against a registered XML schema. If the
XML column into which you are inserting a document has an XML schema modifier, validation occurs
automatically. Otherwise, you can call the DSN_XMLVALIDATE function to do XML schema validation. You
can perform validation during document insertion only if the document is in the textual XML format.

The following examples demonstrate how XML data can be inserted into XML columns. The examples use
table MYCUSTOMER, which is a copy of the sample CUSTOMER table. The XML data that is to be inserted
looks like this:

<customerinfo xmlns="http://posample.org" Cid="1015">
<name>Christine Haas</name>
<addr country="Canada">
<street>12 Topgrove</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X-7F8</pcode-zip>
</addr>
<phone type="work">905-555-5238</phone>
<phone type="home">416-555-2934</phone>
</customerinfo>

Example: In a JDBC application, read textual XML data from file c6.xml as binary data, and insert the data
into an XML column:

PreparedStatement insertStmt = null;
String sqls = null;
int cid = 1015;
sqls = "INSERT INTO MyCustomer (Cid, Info) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);

Chapter 2. Working with XML data 35

https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_ipf_xmlvala.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_ipf_xmlvals.html

insertStmt.setInt(1, cid);
File file = new File("c6.xml");
insertStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());
insertStmt.executeUpdate();

Example: Suppose that the data in file c7.xml contains the same XML document as in file c6.xml, but the
data is stored in binary XML format. In a JDBC application, read the data from file c7.xml, and insert the
data into an XML column:

…
SQLXML info = conn.createSQLXML();
OutputStream os = info.setBinaryStream();
FileInputStream fis = new FileInputStream("c7.xml");
int read;
while ((read = fis.read ()) != -1) {
 os.write (read);
}
PreparedStatement insertStmt = null;
String sqls = null;
int cid = 1015;
sqls = "INSERT INTO MyCustomer (Cid, Info) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
insertStmt.setSQLXML(2, info);
insertStmt.executeUpdate();

Example: In a static embedded C application, insert data from an XML AS BLOB host variable into an XML
column:

EXEC SQL BEGIN DECLARE SECTION;
 sqlint64 cid;
 SQL TYPE IS XML AS BLOB (10K) xml_hostvar;
EXEC SQL END DECLARE SECTION;
…
cid=1015;
/* Read data from file c6.xml into xml_hostvar */
…
EXEC SQL INSERT INTO MyCustomer (Cid,Info) VALUES (:cid, :xml_hostvar);

Example: In a static embedded COBOL application, insert data from a character XML host variable into an
XML column:

…
 WORKING-STORAGE SECTION.
…
* XML HOST VARIABLES
 01 CLOB-XML-IN USAGE IS SQL TYPE IS XML AS CLOB(10K).
 01 CLOB-XML-OUT USAGE IS SQL TYPE IS XML AS CLOB(10K).
* VARIABLE USED FOR DISPLAY OF THE RETRIEVED VALUE
 01 CLOB-XML-OUT-DISPLAY.
 02 CLOB-XML-OUT-DISPLAY-LENGTH
 PIC 9(9) COMP.
 02 CLOB-XML-OUT-DISPLAY-DATA.
 49 FILLER PIC X(10240).

* SQL INCLUDE FOR SQLCA *

 EXEC SQL INCLUDE SQLCA END-EXEC.
 PROCEDURE DIVISION.
* USE XMLPARSE TO CONVERT THE INPUT DATA TO THE XML TYPE.
 EXEC SQL SET :CLOB-XML-IN=
 XMLPARSE(DOCUMENT
 '<customerinfo xmlns="http://posample.org" Cid="1015">' ||
 '<name>Christine Haas</name>' ||
 '<addr country="Canada">' ||
 '<street>12 Topgrove</street>' ||
 '<city>Toronto</city>' ||
 '<prov-state>Ontario</prov-state>' ||
 '<pcode-zip>N8X-7F8</pcode-zip>' ||
 '</addr>' ||
 '<phone type="work">905-555-5238</phone>' ||
 '<phone type="home">416-555-2934</phone>' ||
 '</customerinfo>')
 END-EXEC.
* INSERT THE DATA.
 EXEC SQL INSERT INTO CUSTOMER(CID, INFO)
 VALUES (1015,:CLOB-XML-IN)

36 Db2 11 for z/OS: pureXML Guide

 END-EXEC.
* CHECK THE VALUE THAT YOU INSERTED.
 EXEC SQL SELECT INFO
 INTO :CLOB-XML-OUT FROM CUSTOMER
 WHERE CID=1015
 END-EXEC.
 MOVE CLOB-XML-OUT TO CLOB-XML-OUT-DISPLAY.
 DISPLAY
 CLOB-XML-OUT-DISPLAY-DATA(1:CLOB-XML-OUT-DISPLAY-LENGTH).

Related concepts
XML parsing
XML parsing is the process of converting XML data from its textual XML format to its hierarchical format.
XML schema validation
XML schema validation is the process of determining whether the structure, content, and data types of an
XML document are valid according to an XML schema.

Updates of XML columns
To update entire documents in an XML column, you can use the SQL UPDATE statement. You can include
a WHERE clause when you want to update specific rows. To update portions of XML documents, use the
XMLMODIFY function with a basic XQuery updating expression.
Related concepts
XML parsing
XML parsing is the process of converting XML data from its textual XML format to its hierarchical format.
XMLEXISTS predicate for querying XML data
The XMLEXISTS predicate can be used to restrict the set of rows that a query returns, based on the values
in XML columns.

Updates of entire XML documents
To update an entire XML document in an XML column, use the SQL UPDATE statement. Include a WHERE
clause when you want to update specific rows.

The input to the XML column must be a well-formed XML document, as defined in the XML 1.0
specification. A document node will be created implicitly if one does not already exist. The application
data type can be XML (XML AS BLOB, XML AS CLOB, XML AS DBCLOB), character, or binary.

XML data in an application can be in textual XML format or extensible dynamic binary XML Db2 client/
server binary XML format (binary XML format). Binary XML format is valid only for JDBC, SQLJ, and ODBC
applications. When you update data in an XML column, it must be converted to its XML hierarchical
format. The Db2 database server performs this operation implicitly when XML data from a host variable
directly updates an XML column. Alternatively, you can invoke the XMLPARSE function explicitly when you
perform the update operation, to convert the data to the XML hierarchical format.

When you update an XML column, you might also want to validate the input XML document against a
registered XML schema. You can do that in one of the following ways:

• Implicitly, if the XML column has an XML type modifier defined on it.
• Explicitly, with the DSN_XMLVALIDATE function.

You can use XML column values to specify which rows are to be updated. To find values within XML
documents, you need to use XQuery expressions. One way of specifying XQuery expressions is the
XMLEXISTS predicate, which allows you to specify an XQuery expression and determine if the expression
results in an empty sequence. When XMLEXISTS is specified in the WHERE clause, rows will be updated if
the XQuery expression returns a non-empty sequence.

The following examples demonstrate how XML data can be updated in XML columns. The examples
use table MYCUSTOMER, which is a copy of the sample CUSTOMER table. The examples assume that
MYCUSTOMER already contains a row with a customer ID value of 1004. The XML data that updates
existing column data is in file c7.xml, and looks like this:

Chapter 2. Working with XML data 37

<customerinfo xmlns="http://posample.org" Cid="1004">
<name>Christine Haas</name>
<addr country="Canada">
<street>12 Topgrove</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9Y-8G9</pcode-zip>
</addr>
<phone type="work">905-555-5238</phone>
<phone type="home">416-555-2934</phone>
</customerinfo>

Example: In a JDBC application, read XML data from file c7.xml as binary data, and use it to update the
data in an XML column:

PreparedStatement updateStmt = null;
String sqls = null;
int cid = 1004;
sqls = "UPDATE Customer SET Info=? WHERE Cid=?";
updateStmt = conn.prepareStatement(sqls);
updateStmt.setInt(2, cid);
File file = new File("c7.xml");
updateStmt.setBinaryStream(1, new FileInputStream(file), (int)file.length());
updateStmt.executeUpdate();

Example: In an embedded C application, update data in an XML column from an XML AS BLOB host
variable:

EXEC SQL BEGIN DECLARE SECTION;
 sqlint64 cid;
 SQL TYPE IS XML AS BLOB (10K) xml_hostvar;
EXEC SQL END DECLARE SECTION;
…
cid=1004;
/* Read data from file c7.xml into xml_hostvar */
…
EXEC SQL UPDATE MYCUSTOMER SET xmlcol=:xml_hostvar WHERE Cid=:cid;

In these examples, the value of the Cid attribute within the <customerinfo> element happens to be stored
in the CID relational column as well. Because of this, the WHERE clause in the UPDATE statements used
the relational column CID to specify the rows to update. In the case where the values that determine
which rows are chosen for update are found only within the XML documents themselves, the XMLEXISTS
predicate can be used. For example, the UPDATE statement in the previous embedded C application
example can be changed to use XMLEXISTS as follows:

EXEC SQL UPDATE MYCUSTOMER SET xmlcol=:xml_hostvar
 WHERE XMLEXISTS ('declare default element namespace "http://posample.org";
 /customerinfo[@Cid = $c]'
 passing INFO, cast(:cid as integer) as "c");

Partial updates of XML documents
To update part of an XML document in an XML column, use the SQL UPDATE statement with the
XMLMODIFY built-in scalar function.

The XMLMODIFY function specifies a basic updating expression that you can use to insert nodes, delete
nodes, replace nodes, or replace the values of a node in XML documents that are stored in XML columns.

Before you can use XMLMODIFY to update part of an XML document, the column that contains the XML
document must support XML versions.

The types of basic updating expressions are:

insert expression
Inserts copies of one or more nodes into a designated position in a node sequence.

replace expression
Replaces an existing node with a new sequence of zero or more nodes, or replaces a node's value
while preserving the node's identity.

38 Db2 11 for z/OS: pureXML Guide

delete expression
Deletes zero or more nodes from a node sequence.

Example

Suppose that you want to replace the second shipTo node in a purchaseOrder document that has
purchase order ID (POID) 5000, and looks like this:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

You can use an SQL UPDATE statement like this to replace the shipTo node:

UPDATE PURCHASEORDER
 SET INFO = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 replace node /ipo:purchaseOrder/shipTo[name="Joe Lee"]
 with $x', XMLPARSE(
 '<shipTo exportCode="1" xsi:type="ipo:USAddress">
 <name>Joe Lee</name>
 <street>555 Quarry Road</street>
 <city>Palo Alto</city>
 <state/>CA
 <postcode>94304</postcode>
 </shipTo>') AS "x")
 WHERE POID=5000

After the statement is executed, the contents of the document in the PORDER column are:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>

Chapter 2. Working with XML data 39

 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:USAddress">
 <name>Joe Lee</name>
 <street>555 Quarry Road</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>94304</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>505 First Street</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

Deletion of rows with XML documents from tables
To delete rows that contain XML documents, you can use the DELETE SQL statement. You can include a
WHERE clause when you want to delete specific rows.

You can specify which rows are to be deleted based on values within XML columns. To find values within
XML documents, you need to use XQuery expressions. One way of specifying XQuery expressions is with
the XMLEXISTS predicate. When you specify XMLEXISTS in a WHERE clause, rows are deleted if the
XQuery expression returns a non-empty sequence.

If an XML column is nullable, to delete a value from the XML column without deleting the row, use the
UPDATE SQL statement to set the column value to NULL.

The following examples demonstrate how XML data can be deleted from XML columns. The examples use
table MYCUSTOMER, which is a copy of the sample CUSTOMER table, and assume that MYCUSTOMER has
been populated with all of the Customer data.

Example: Delete the rows from table MYCUSTOMER for which the CID column value is 1002.

DELETE FROM MYCUSTOMER WHERE CID=1002

Example: Delete the rows from table MYCUSTOMER for which the value of the city element is Markham.

DELETE FROM MYCUSTOMER
 WHERE XMLEXISTS ('declare default element namespace "http://posample.org";
//addr[city="Markham"]' passing INFO)

Example: Delete the XML document in the row of MYCUSTOMER for which the value of the city element
is Markham, but leave the row.

UPDATE MYCUSTOMER SET INFO = NULL
 WHERE XMLEXISTS ('$declare default element namespace "http://posample.org";
 //addr[city="Markham"]' passing INFO)

40 Db2 11 for z/OS: pureXML Guide

Related concepts
XMLEXISTS predicate for querying XML data
The XMLEXISTS predicate can be used to restrict the set of rows that a query returns, based on the values
in XML columns.

XML versions
Multiple versions of an XML document can coexist in an XML table. The existence of multiple versions
of an XML document can lead to improved concurrency through lock avoidance. In addition, multiple
versions can save real storage by avoiding a copy of the old values in the document into memory in some
cases.

Db2 supports multiple versions of an XML document in an XML column if the base table space for the
table that contains the XML column is a universal table space, and all other XML columns in the table
support multiple versions.

If an XML table does not support multiple XML versions, you can convert the table to a table that supports
multiple XML versions by following these steps:

1. Unload the data from the table that contains the XML columns.
2. Drop the table.
3. Create the table in a universal table space. The new table supports multiple XML versions.
4. Load the data into the table.

With XML versions, when you insert an XML document into an XML column, Db2 assigns a version number
to the XML document. If the entire XML document is updated, Db2 creates a new version of the document
in the XML table. If a portion of the XML document is updated, Db2 creates a new version of the updated
portion. When Db2 uses XML versions, more data set space is required than when versions are not used.
However, Db2 periodically deletes versions that are no longer needed. In addition, you can run the REORG
utility against the XML table space that contains the XML document to remove unneeded versions. Db2
removes versions of a document when update operations that require the versions are committed, and
when there are no readers that reference the unneeded versions.

XML versions are different from table space versions or index versions. The purpose of XML versions is to
optimize concurrency and memory usage. The purpose of table space and index versions is to maximize
data availability.

Example of improved concurrency with XML versions: The following example demonstrates how
multiple XML versions can improve concurrency when the same XML documents are modified multiple
times within the same transaction.

Suppose that table T1, which is in a universal table space, is defined like this:

CREATE T1 (INT1 INT,
XML1 XML,
XML2 XML);

The table contains the following data.

INT1 XML1 XML2

350 <A1>111</A1> <A2>aaa</A2>

100 <A1>111</A1> <A2>aaa</A2>

250 <A1>111</A1> <A2>aaa</A2>

An application performs SQL read operations that are represented by the following pseudocode:

EXEC SQL
 DECLARE CURSOR C1 FOR
 SELECT INT1, XML1
 FROM T1

Chapter 2. Working with XML data 41

 ORDER BY INT1
 FOR READ ONLY;

At the same time, another application performs SQL write operations that are represented by the
following pseudocode:

EXEC SQL UPDATE T1
 SET XML1 = XMLPARSE(DOCUMENT '<B1>222</B1>');
EXEC SQL OPEN CURSOR C1;
EXEC SQL UPDATE T1
 SET XML1 = XMLPARSE(DOCUMENT '<C1>333</C1>');
EXEC SQL FETCH FROM C1 INTO :HVINT1, :HVXML1;

With multiple versions, the reading application does not need to hold a lock, so the updating application
can do its update operations without waiting for the reading application to finish. The reading application
reads the old versions of the XML values, which are consistent data.

Example of improved storage usage with XML versions: The following example demonstrates how
multiple XML versions can result in the use of less real storage when an XML document is the object of a
self-referencing update operation.

Suppose that table T1, which is in a universal table space, is defined like this:

CREATE T1 (INT1 INT,
XML1 XML,
XML2 XML);

The table contains the following data.

INT1 XML1 XML2

350 <A1>111</A1> <A2>aaa</A2>

100 <A1>111</A1> <A2>aaa</A2>

250 <A1>111</A1> <A2>aaa</A2>

An application performs SQL operations that are represented by the following pseudocode:

EXEC SQL
 UPDATE T2
 SET XML1 = XML2, 1
 XML2 = XML1 2
 WHERE INT1 = 100;
EXEC SQL
 COMMIT 3 ;

The results of those operations are:

1. When column XML1 is updated, Db2 stores the updated document as a new version in the XML table
for column XML1. There are now two versions of the XML document for the second row of column
XML1:

First version: <A1>111</A1>
Second version: <A2>aaa</A2>

2. When column XML2 is updated, Db2 stores the updated document as a new version in the XML table
for column XML2. There are now two versions of each XML document for the second row of column
XML2:

First version: <A2>aaa</A2>
Second version: <A1>111</A1>

3. The update operations are committed, so the old versions are no longer needed. Db2 deletes those
versions from the XML tables for columns XML1 and XML2.

Without multiple XML versions, Db2 needs to copy the original versions of the updated documents into
memory, so that their values are not lost. For large XML documents, storage shortages might result.

42 Db2 11 for z/OS: pureXML Guide

XML support in triggers
You can use the CREATE TRIGGER SQL statement to create BEFORE UPDATE or AFTER UPDATE triggers
on XML columns. You can also use this statement to create INSERT or DELETE triggers on tables that
include XML columns.

Triggers on tables with XML columns have the following restrictions:

• A transition variable cannot have the XML type.
• A column of a transition table that is referenced in the trigger body cannot have the XML type.

Example: Create a BEFORE UPDATE trigger on table MYCUSTOMER, which is a copy of the sample
CUSTOMER table.

CREATE TRIGGER UPDBEFORE
 NO CASCADE BEFORE UPDATE ON MYCUSTOMER
 REFERENCING NEW AS N
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 SET N.CID=O.CID+10000;
 END

Although MYCUSTOMER contains two XML columns, the transition variable N.CID refers to a non-XML
column, so this trigger is valid.

Example: Create an INSERT trigger on the MYCUSTOMER table.

CREATE TRIGGER INSAFTR
 AFTER INSERT ON MYCUSTOMER
 REFERENCING NEW TABLE AS N
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 SELECT N.CID FROM N;
 END

Although transition table N has two XML columns, the trigger body does not refer to the XML columns of
the transition table, so this trigger is valid.

If you need to use data from an XML column in a transition variable, you can circumvent the restriction on
transition variables of the XML data type in triggers by using the XMLTABLE function to access the data in
the XML column as non-XML data types.

Example: Suppose that the CUST table is defined like this:

CREATE TABLE CUST (
 ID BIGINT NOT NULL PRIMARY KEY,
 NAME VARCHAR(30),
 CITY VARCHAR(20),
 ZIP VARCHAR(12),
 INFO XML)

Create an INSERT trigger on the CUST table that copies name, city, and zip code information to itself for
rows that are inserted into the CUST table. The data that you need to copy is in XML column INFO. You
cannot refer to INFO directly in the trigger body. However, you can use the XMLTABLE function to create a
result table with non-XML columns that contain the fields that you need. Then you can use a subselect to
retrieve the row of the result table that corresponds to the row whose insertion activates the trigger.

CREATE TRIGGER INS_CUST
 AFTER INSERT ON CUST
 REFERENCING NEW AS NEWROW
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 UPDATE CUST
 SET (NAME, CITY, ZIP) =
 (SELECT X.NAME, X.CITY, X.ZIP
 FROM CUST, XMLTABLE('CUSTOMERINFO' PASSING CUST.INFO
 COLUMNS
 NAME VARCHAR(30) PATH 'NAME',
 CITY VARCHAR(20) PATH 'ADDR/CITY',
 ZIP VARCHAR(12) PATH 'ADDR/PCODE-ZIP') AS X
 WHERE CUST.ID = NEWROW.ID

Chapter 2. Working with XML data 43

)
 WHERE CUST.ID = NEWROW.ID;
 END

Related reference
CREATE TRIGGER (Db2 SQL)

XML parsing
XML parsing is the process of converting XML data from its textual XML format to its hierarchical format.

You can let the Db2 database manager perform parsing implicitly, or you can call the XMLPARSE function
to perform XML parsing explicitly.

Implicit XML parsing occurs in the following cases:

• When you pass data to the database server using a host variable of type XML, or use a parameter
marker of type XML

The database server does the parsing when it binds the value for the host variable or parameter marker
for use in statement processing.

• When you assign a host variable, parameter marker, or SQL expression with a string data type
(character, graphic or binary) to an XML column in an INSERT, UPDATE, DELETE, or MERGE statement.
The parsing occurs when the Db2 database system implicitly adds an XMLPARSE function to the
statement.

You perform explicit XML parsing when you invoke the XMLPARSE function on the input XML data. You can
use the result of XMLPARSE in any context that accepts an XML data type. For example, you can assign the
result to an XML column.

The XMLPARSE function takes a character or binary data type as input. For embedded dynamic SQL
applications, if the argument of the XMLPARSE function is a parameter marker, it must be a typed marker.
For example:

INSERT INTO MYCUSTOMER (CID, INFO)
 VALUES (?, xmlparse(document cast(? as clob(1k)) preserve whitespace))

Related concepts
Updates of XML columns
To update entire documents in an XML column, you can use the SQL UPDATE statement. You can include
a WHERE clause when you want to update specific rows. To update portions of XML documents, use the
XMLMODIFY function with a basic XQuery updating expression.
XML schema validation
XML schema validation is the process of determining whether the structure, content, and data types of an
XML document are valid according to an XML schema.
Related reference
XMLPARSE (Db2 SQL)

XML parsing and whitespace handling
During explicit XML parsing, you can control the preservation or stripping of boundary whitespace
characters when you store the data in the database.

According to the XML standard, whitespace is space characters (U+0020), carriage returns (U+000D), line
feeds (U+000A), or tabs (U+0009) that are in the document to improve readability. When any of these
characters appear as part of a text string, they are not considered to be whitespace.

44 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_createtrigger.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlparse.html

Boundary whitespace is whitespace characters that appear between elements. For example, in the
following document, the spaces between <a> and and between and are boundary
whitespace.

<a> and between

With explicit invocation of XMLPARSE, you use the STRIP WHITESPACE or PRESERVE WHITESPACE option
to control preservation of boundary whitespace. The default is stripping of boundary whitespace.

The XML standard specifies an xml:space attribute that controls the stripping or preservation of
whitespace within XML data. Possible values are preserve or default. The Db2 database server
ignores any other values. The preserve value causes boundary whitespace within an element to be
preserved, regardless of application settings, such as the XMLPARSE whitespace setting. The default
value causes application settings to be used for boundary whitespace handling. xml:space attributes
override any whitespace settings for implicit or explicit XML parsing, except for end-of-line processing.
For end-of-line processing, when a carriage return character and a line feed character appear together,
they are replaced with a line feed character. A carriage return character that appears by itself is replaced
with a line feed character. These replacements occur, regardless of the xml:space attribute.

For example, in the following document, the spaces immediately before and after are always
preserved, regardless of any XML parsing options, because the spaces are within a node with the attribute
xml:space="preserve":

<a xml:space="preserve"> <c>c</c>b

However, in the following document, the spaces immediately before and after can be
controlled by the XML parsing options, because the spaces are within a node with the attribute
xml:space="default":

<a xml:space="default"> <c>c</c>b

XML parsing and DTDs
If the input data contains an internal document type declaration (DTD), the XML parsing process also
checks the syntax of those DTDs.

In addition, the parsing process:

• Applies default values that are defined by the internal DTDs
• Expands entity references

Example: implicit XML parsing File c8.xml contains the following document:

<customerinfo xml:space="preserve" xmlns="http://posample.org" Cid='1008'>
 <name>Kathy Smith</name>
 <addr country='Canada'>
 <street>14 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type='work'>416-555-3333</phone>
</customerinfo>

In a JDBC application, read the XML document from the file, and insert the data into XML column Info of
table MYCUSTOMER, which is a copy of the sample Customer table. Let the Db2 database server perform
an implicit XML parse operation.

PreparedStatement insertStmt = null;
String sqls = null;
int cid = 1008;
sqls = "INSERT INTO MYCUSTOMER (Cid, Info) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
File file = new File("c8.xml");

Chapter 2. Working with XML data 45

insertStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());
insertStmt.executeUpdate();

No whitespace handling is specified, so the default behavior of stripping whitespace is assumed.
However, the document contains the xml:space="preserve" attribute, so whitespace is preserved.
This means that, after end-of-line processing, the line feeds and spaces between the elements in the
document remain.

If you retrieve the stored data, content looks like this:

<customerinfo xml:space="preserve" xmlns="http://posample.org" Cid='1008'>
 <name>Kathy Smith</name>
 <addr country='Canada'>
 <street>14 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type='work'>416-555-3333</phone>
</customerinfo>

Example: explicit XML parsing Assume that the following document is in BLOB host variable
blob_hostvar.

<customerinfo xml:space="default" xmlns="http://posample.org" Cid='1009'>
 <name>Kathy Smith</name>
 <addr country='Canada'>
 <street>15 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type='work'>416-555-4444</phone>
</customerinfo>

In a static embedded C application, insert the document from the host variable into XML column Info
of table MYCUSTOMER. The host variable is not an XML type, so you can execute XMLPARSE explicitly.
Specify STRIP WHITESPACE to remove any boundary whitespace.

EXEC SQL BEGIN DECLARE SECTION;
 SQL TYPE BLOB (10K) blob_hostvar;
EXEC SQL END DECLARE SECTION;
…
EXEC SQL INSERT INTO MYCUSTOMER (Cid, Info)
 VALUES (1009,
 XMLPARSE(DOCUMENT :blob_hostvar STRIP WHITESPACE));

The document contains the xml:space="default" attribute, so the XMLPARSE specification of STRIP
WHITESPACE controls whitespace handling. This means that the carriage returns, line feeds, and spaces
between the elements in the document are removed.

If you retrieve the stored data, you see a single line with the following content:

<customerinfo xml:space="default" xmlns="http://posample.org" Cid='1009'>
<name>Kathy Smith</name><addr country='Canada'><street>15 Rosewood</street>
<city>Toronto</city><prov-state>Ontario</prov-state><pcode-zip>M6W 1E6</pcode-zip>
</addr><phone type='work'>416-555-4444</phone></customerinfo>

Example: parsing of a document with an internal DTD In a C language application, host variable
clob_hostvar contains the following document, which contains an internal DTD:

<!DOCTYPE prod [<!ELEMENT description (name,details,price,weight)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT details (#PCDATA)>
 <!ELEMENT price (#PCDATA)>
 <!ELEMENT weight (#PCDATA)>
 <!ENTITY desc "Anvil">
]>
<product xmlns="http://posample.org" pid=''110-100-01'' >
 <description>
 <name>&desc;</name>
 <details>Very heavy</details>
 <price> 9.99 </price>

46 Db2 11 for z/OS: pureXML Guide

 <weight>1 kg</weight>
 </description>
</product>

Insert the data into table MyProduct, which is a copy of the sample Product table:

EXEC SQL BEGIN DECLARE SECTION;
 SQL TYPE CLOB (10K) clob_hostvar;
EXEC SQL END DECLARE SECTION;
…
EXEC SQL insert into
 MyProduct (pid, name, Price, PromoPrice, PromoStart, PromoEnd, description)
 values ('110-100-01','Anvil', 9.99, 7.99, '11/02/2004','12/02/2004',
 XMLPARSE (DOCUMENT :clob_hostvar STRIP WHITESPACE));

XMLPARSE specifies stripping of whitespace, so boundary whitespace within the document is removed. In
addition, when the database server executes XMLPARSE, it replaces the entity reference &desc; with its
value.

If you retrieve the stored data, you see a single line with the following content:

<product xmlns="http://posample.org" pid="110-100-01"><description><name>Anvil
</name><details>Very heavy</details><price> 9.99 </price>
<weight>1 kg</weight></description></product>

XML schema validation
XML schema validation is the process of determining whether the structure, content, and data types of an
XML document are valid according to an XML schema.

In addition, XML schema validation strips ignorable whitespace from the input document.

There are two ways that you can validate an XML document:

• Automatically, by including an XML type modifier in the XML column definition in a CREATE TABLE or
ALTER TABLE statement. When a column has an XML type modifier, Db2 implicitly validates documents
that are inserted into the column or documents in the column that are updated.

• Manually, by executing the DSN_XMLVALIDATE built-in function when you insert a document into an
XML column or update a document in an XML column.

Validation is optional when you insert data into an XML column with no XML type modifier. Validation is
mandatory when you insert data into an XML column with an XML type modifier.

Related concepts
Data model generation in XQuery
Before an XQuery expression can be processed, the input documents must be represented in the
pureXML data model.
Related reference
DSN_XMLVALIDATE (Db2 SQL)

XML schema validation and ignorable whitespace
XML schema validation removes ignorable whitespace from a document.

According to the XML standard, whitespace is space characters (U+0020), carriage returns (U+000D), line
feeds (U+000A), or tabs (U+0009) that are in the document to improve readability. When any of these
characters appear as part of a text string, they are not considered to be whitespace.

Ignorable whitespace is whitespace that can be eliminated from the XML document. The XML schema
document determines which whitespace is ignorable whitespace. If an XML document defines an
element-only complex type (an element that contains only other elements), the whitespace between
the elements is ignorable. If the XML schema defines a simple element that contains a non-string type,
the whitespace within that element is ignorable.

Chapter 2. Working with XML data 47

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_dsnxmlvalidate2.html

Example: The description element in the sample product.xsd XML schema document is defined like
this:

<xs:element name="description" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string" minOccurs="0" />
 <xs:element name="details" type="xs:string" minOccurs="0" />
 <xs:element name="price" type="xs:decimal" minOccurs="0" />
 <xs:element name="weight" type="xs:string" minOccurs="0" />
 …
 </xs:complexType>
</xs:element>

The description element has an element-only complex type because it contains only other elements.
Therefore, whitespace between elements in a description element is ignorable whitespace. The price
element can also contain ignorable whitespace because it is a simple element that contains a non-string
type.

Suppose that schema PRODUCT is registered in the XML schema repository (XSR).

Suppose that you create table MYPRODUCT like this:

CREATE TABLE MYPRODUCT (
 PID VARCHAR(10) NOT NULL PRIMARY KEY,
 NAME VARCHAR(128),
 PRICE DECIMAL(30,2),
 PROMOPRICE DECIMAL(30,2),
 PROMOSTART DATE,
 PROMOEND DATE,
 DESCRIPTION XML)

You insert the following document into XML column DESCRIPTION in the MYPRODUCT table, and you
validate the XML data against the XML schema document product.xsd, which is located in the XML
schema repository on the same database server as the MYPRODUCT table.

<product xmlns="http://posample.org" pid="110-100-01" >
 <description>
 <name>Anvil</name>
 <details>Very heavy</details>
 <price> 9.99 </price>
 <weight>1 kg</weight>
 </description>
</product>

When you retrieve the stored data, you can see that the XML schema validation process removes
ignorable whitespace. The retrieved data is a single line with the following content:

<product xmlns="http://posample.org" pid="110-100-01"><description><name>Anvil
</name><details>Very heavy</details><price>9.99</price><weight>1 kg</weight>
</description></product>

The PRODUCT schema defines the whitespace around the name, details, price, and weight elements,
and the whitespace within the price element as ignorable whitespace, so XML schema validation removes
it.

XML schema validation with an XML type modifier
You can automate XML schema validation by adding an XML type modifier to an XML column definition.

An XML type modifier associates a set of one or more XML schemas with the XML data type. This type
modifier enforces that all XML documents that are stored in an XML column are validated according to one
of the XML schemas that are specified in the type modifier. Before schema validation through an XML type
modifier can occur, all schema documents that make up an XML schema must be registered in the built-in
XML schema repository (XSR).

You define an XML type modifier in a CREATE TABLE or ALTER TABLE statement as part of an XML column
definition. The XML type modifier can identify more than one XML schema. You might want to associate
more than one XML schema with an XML type modifier for the following reasons:

48 Db2 11 for z/OS: pureXML Guide

• The requirements for an XML schema evolve over time.

An XML column might contain documents that describe only one type of information, but some fields
in newer documents might need to be different from fields in the older documents. As new document
versions are required, you can add new XML schemas to the XML type modifier.

• A single XML column contains XML documents of different kinds.

An XML column might contain documents that have several different formats. In this case, each type of
document needs its own XML schema.

Alternatively, you might want to associate a single XML schema with multiple type modifiers. An XML
schema can define many different documents. You might need to separate the XML documents into
different columns, but specify the same XML schema in a type modifier for each column.

For example, a sales department might have one XML schema that defines purchase orders and billing
statements. You can store purchase orders in one XML column, and billing statements in another XML
column. Both XML columns have an XML type modifier that points to the same XML schema, but each
column uses a different document in the XML schema.

Not all XML schemas that the XML type modifier identifies need to be registered before you execute
the CREATE or ALTER statement. If the XML type modifier specifies a target namespace, only the XML
schemas in that target namespace that exist when the CREATE or ALTER statement is executed are
associated with the XML type modifier.

The following examples of defining an XML type modifier refer to these XML schemas.

XML schema name Target namespace Schema location

Timestamp when schema
was registered in the
XSR

PO1 http://
www.example.com/PO1

http://www.example.com/
PO1.xsd

2008-10-01
10:30:59.0100

PO2 http://
www.example.com/PO2

http://www.example.com/
PO2.xsd

2009-09-25
13:15:00.0200

PO3 No namespace http://www.example.com/
PO3.xsd

2009-06-25
13:15:00.0200

PO4 http://
www.example.com/PO2

http://www.example.com/
PO4.xsd

2009-10-25
13:15:00.0200

Example: Use the following SQL statement to create a table named PURCHASEORDERV1, with an XML
type modifier on the CONTENT column. The XML type modifier uses the URI and LOCATION keywords to
uniquely identify XML schema PO2.

CREATE TABLE PURCHASEORDERV1(
 ID INT NOT NULL,
 CONTENT XML(XMLSCHEMA URI 'http://www.example.com/PO2'
 LOCATION 'http://www.example.com/PO2.xsd'))

Example: Use the following SQL statement to create a table named PURCHASEORDERV2, with an XML
type modifier on the CONTENT column. The XML type modifier uses the URI keyword to identify the
XML schemas. If you execute the CREATE statement before 2009-10-25 13:15:00.0200, the XML type
modifier identifies only XML schema PO2, and PO2 is used to validate any INSERT operations that are
performed. Db2 does not add PO4 to the XML type modifier after PO4 is registered. If you execute the
CREATE statement after 2009-10-25 13:15:00.0200, an SQL error occurs because the XML type modifier
uses the URI keyword to identify two XML schemas: PO2 and PO4. The URI keyword must identify only
one XML schema.

CREATE TABLE PURCHASEORDERV2(
 ID INT NOT NULL,
 CONTENT XML(XMLSCHEMA URI 'http://www.example.com/PO2'))

Chapter 2. Working with XML data 49

Example: Use the following SQL statement to create a table named PURCHASEORDERV3, with an XML
type modifier on the CONTENT column that uses XML schema PO3. XML schema PO3 has no namespace,
so you need to use the NO NAMESPACE keyword in the XML type modifier.

CREATE TABLE PURCHASEORDERV3(
 ID INT NOT NULL,
 CONTENT XML(XMLSCHEMA NO NAMESPACE
 LOCATION 'http://www.example.com/PO3.xsd'))
)

Example: Suppose that XML schema PO1 has two global elements: purchaseOrder and comment. Use
the following SQL statement to create a table named PURCHASEORDERV4, with an XML type modifier on
the CONTENT column that causes validation to be performed against the purchaseOrder element in XML
schema PO1.

CREATE TABLE PURCHASEORDERV4(
 ID INT NOT NULL,
 CONTENT XML(XMLSCHEMA ID SYSXSR.PO1
 ELEMENT "purchaseOrder"))

Example: Use the following SQL statement to create a table named PURCHASEORDERV5, with an XML
type modifier on the CONTENT column that includes multiple XML schemas: PO1, PO2, PO3, and PO4.

CREATE TABLE PURCHASEORDERV5(
 ID INT NOT NULL,
 CONTENT XML(XMLSCHEMA ID SYSXSR.PO1, ID SYSXSR.PO2,
 ID SYSXSR.PO3, ID SYSXSR.PO4))

Example: Suppose that new documents that will be added to table PURCHASEORDERV1 will have a new
format. They need to conform to XML schema PO1. Alter the XML column to add PO1 to the XML type
modifier:

ALTER TABLE PURCHASEORDERV1(
 ALTER CONTENT
 SET DATA TYPE XML(XMLSCHEMA
 ID SYSXSR.PO1,
 ID SYSXSR.PO2))

The table space that contains the XML documents for the CONTENT column is not put in CHECK-pending
status, because all existing documents conform to XML schema SYSXSR.PO2.

Example: Suppose that you no longer want documents in the CONTENT column to conform to XML
schema SYSXSR.PO2. Alter the XML column to remove SYSXSR.PO2 to the XML type modifier:

ALTER TABLE PURCHASEORDERV1
 ALTER CONTENT
 SET DATA TYPE XML(XMLSCHEMA
 ID SYSXSR.PO1))

The table space that contains the XML documents for the CONTENT column is put in CHECK-pending
status, because all existing documents now need to conform only to XML schema SYSXSR.PO1.

Example: Suppose that you no longer need to do automatic validation of documents in the CONTENT
column. Alter the column to remove the XML type modifier:

ALTER TABLE PURCHASEORDERV1
 ALTER CONTENT
 SET DATA TYPE XML

The table space that contains the XML documents for the CONTENT column is not put in CHECK-pending
status, because there is no longer an XML schema to which the existing documents need to conform.

50 Db2 11 for z/OS: pureXML Guide

How Db2 chooses an XML schema from an XML type modifier
You can include more than one XML schema in an XML type modifier. When you insert into or update an
XML column, Db2 chooses one XML schema to do validation.

Db2 uses the following process to determine which XML schema to use.

• If the operation is an update operation, and an XML schema that is specified by the XML type modifier
has already been used to validate the original document, Db2 uses the same XML schema to validate
the updated document.

• If there is only one XML schema whose target namespace matches the namespace name of the root
element node in the document that is being validated (the XML instance document), Db2 chooses that
XML schema to validate the XML document.

• If there is more than one XML schema with a target namespace that matches the namespace name of
the root element, Db2 chooses an XML schema by using the schema location hint. The root element
node of an XML instance document can contain an xsi:schemaLocation attribute. That attribute consists
of one or more pairs of URI references, separated by white space. The first member of each pair is
a namespace name, and the second member of the pair is a URI that describes where to find an
appropriate schema document for that namespace. The second member of each pair is the schema
location hint for the namespace name that is specified in the first member.

For example, this is a schema location attribute:

xsi:schemaLocation="http://www.example.com/PO2 http://www.example.com/PO4.xsd"

The first member of the pair, http://www.example.com/PO2, is the namespace name. The second
member of the pair, http://www.example.com/PO4.xsd, is the URI that provides the schema location
hint.

Db2 uses the schema location hint to choose an XML schema in the following way:

1. If the root element node contains an xsi:schemaLocation attribute, Db2 searches the attribute value
for a schema location hint with a corresponding namespace name that matches the namespace
name in the root element node.

2. If Db2 finds a schema location hint, Db2 uses the hint to identify an XML schema whose schema
location URI is identical to the schema location hint. Db2 validates the input document against that
schema.

3. If the root element does not contain an xsi:schemaLocation attribute, or the xsi:schemaLocation
attribute does not contain a schema location hint with a corresponding namespace name that
matches the namespace name in the root element node, Db2 uses the XML schema with the same
target namespace and the latest registration timestamp.

Recommendation: Include a schema location hint in instance documents, to simplify identification of
the correct XML schema.

• If the root element of the XML instance document does not have a namespace name, only XML schemas
with no target namespace are candidates for use in validation. Db2 chooses an XML schema in the
following way:

1. If a single XML schema in the XML type modifier has no target namespace, Db2 uses that XML
schema for validation.

2. If more than one XML schema in the XML type modifier has no target namespace, and the XML
instance document contains an xsi:noNamespaceSchemaLocation attribute, Db2 uses the value of
xsi:noNamespaceSchemaLocation, which is the schema location hint, to choose an XML schema.

3. If the root element does not contain the xsi:noNamespaceSchemaLocation attribute, or the schema
location hint does not match the schema location URI of any XML schema in the XML type modifier,
Db2 uses the XML schema with the latest registration timestamp from those XML schemas that have
no target namespace.

Example: Suppose that the XML schema repository (XSR) contains the following XML schemas.

Chapter 2. Working with XML data 51

XML schema name Target namespace Schema location

Timestamp when schema
was registered in the
XSR

PO1 http://
www.example.com/PO1

http://www.example.com/
PO1.xsd

2008-10-01
10:30:59.0100

PO2 http://
www.example.com/PO2

http://www.example.com/
PO2.xsd

2009-09-25
13:15:00.0200

PO3 No namespace http://www.example.com/
PO3.xsd

2009-06-25
13:15:00.0200

PO4 http://
www.example.com/PO2

http://www.example.com/
PO4.xsd

2009-10-25
13:15:00.0200

Also suppose that table PURCHASEORDERV5 is defined like this:

CREATE TABLE PURCHASEORDERV5(
 ID INT NOT NULL,
 CONTENT XML(XMLSCHEMA ID SYSXSR.PO1, ID SYSXSR.PO2,
 ID SYSXSR.PO3, ID SYSXSR.PO4))

You execute the following INSERT statements:

INSERT INTO PURCHASEORDERV5 VALUES(1, 1
 '<po:purchaseOrder xmlns:po="http://www.example.com/PO1">
 …
 </po:purchaseOrder>'
);
INSERT INTO PURCHASEORDERV5 VALUES(2, 2
 '<po:purchaseOrder xmlns:po="http://www.example.com/PO2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/PO2
 http://www.example.com/PO2.xsd">
 …
 </po:purchaseOrder>');
INSERT INTO PURCHASEORDERV5 VALUES(2, 3
 '<po:purchaseOrder xmlns:po="http://www.example.com/PO2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/PO2
 http://www.example.com/PO4.xsd">
 …
 </po:purchaseOrder>');
INSERT INTO purchase_orders VALUES(3, 4
 '<purchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.example.com/PO3.xsd">
 …
 </purchaseOrder>');

The following table lists the XML schemas that Db2 uses, and the reasons for those choices.

Insert
statement
number

XML schemas
that are used
for validation,
in order of
choice Reason

 1 PO1 The namespace name in the root element of the instance document
is http://www.example.com/PO1. This name matches only the target
namespace for XML schema PO1.

52 Db2 11 for z/OS: pureXML Guide

Insert
statement
number

XML schemas
that are used
for validation,
in order of
choice Reason

 2 PO2, PO4 The namespace name in the root element in the instance document is
http:// www.example.com/PO2. which matches the target namespace
of XML schemas PO2 and PO4. The root element of the instance
document also contains an xsi:schemaLocation attribute whose value
provides the schema location hint http://www.example.com/PO2.xsd.
The schema location hint matches the schema location for XML
schema PO2. Therefore Db2 chooses PO2 to validate the instance
document. If validation with PO2 fails, Db2 uses PO4.

 3 PO4, PO2 The namespace name in the root element in the instance document is
http:// www.example.com/PO2. which matches the target namespace
of XML schemas PO2 and PO4. The root element of the instance
document also contains an xsi:schemaLocation attribute whose value
provides the schema location hint http://www.example.com/PO4.xsd.
The schema location hint matches the schema location for XML
schema PO4. Therefore Db2 chooses PO4 to validate the instance
document. If validation with PO4 fails, Db2 uses PO2.

 4 PO3 The root element of the instance document has no namespace name.
XML schema PO3 has no target namespace. Therefore, Db2 uses PO3
for validation.

Revalidation after XML document updates
After you update an XML document in a column that has an XML type modifier, Db2 revalidates all or part
of the document.

If the XML type modifier includes several XML schemas, Db2 uses the same XML schema for revalidation
that it used for the original validation.

If you update an entire document, Db2 revalidates the entire document. However, if you use the
XMLMODIFY function to update only a portion of the document, Db2 might need to validate only the
updated portion.

The following table lists the rules that Db2 uses for determining how much of a document to revalidate.

XMLMODIFY
option Revalidation behavior

insert nodes Revalidation behavior depends on the source expression and the type of insert operation:

• If the source expression is a sequence of attribute nodes, Db2 revalidates each attribute
in that sequence under its new parent and the parent of the target node.

• If the operation is insert nodes…into, Db2 revalidates the parent of the target node.
• If the operation is insert nodes…before or insert nodes…after, Db2 revalidates the

parent of the target node.

delete nodes Db2 revalidates from the common ancestor of the deleted nodes.

replace node Db2 revalidates the parent of the target node.

replace value of
node

Db2 revalidates the target node and the parent of the target node.

Any update
operation

Db2 revalidates from the target node's topmost ancestor with an xsi:type attribute.

Chapter 2. Working with XML data 53

Because Db2 revalidates only the changed portion of an XML document, some constraints that are
defined in the XML schema on the instance document cannot be enforced during revalidation if they
require other portions of the instance document. Those constraints are:

• Indicators that enforce uniqueness of elements or attributes

If a uniqueness constraint is specified on an ancestor of a node that is to be revalidated, the constraint
is not enforced.

• ID and IDREF attributes

Db2 does not validate ID and IDREF attributes during revalidation.
• Key and keyref elements

If a key element and a corresponding keyref element appear in the node that is to be revalidated, Db2
validates them. If the key element or the keyref element appear elsewhere in the document, Db2 does
not validate them.

Example: Suppose that table PURCHASEORDERV4 is defined like this:

CREATE TABLE PURCHASEORDERV4(
 ID INT NOT NULL,
 CONTENT XML(XMLSCHEMA ID SYSXSR.PO1
 ELEMENT "purchaseOrder"))

Insert a row into the PURCHASEORDERV4 table:

INSERT INTO PURCHASEORDERV4 VALUES(1,
 '<po:purchaseOrder xmlns:po="http://www.example.com/PO1">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>95160</postcode>
 </shipTo>
 …
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
 </po:purchaseOrder>
);

Use XMLMODIFY to make the following updates:

XMLMODIFY operation: Add a <shipDate> element to the first <item> element in the document in column
CONTENT:

UPDATE PURCHASEORDERV4
 SET CONTENT =
 XMLMODIFY ('declare namespace po="http://www.example.com/PO1";
 insert node $x into /po:purchaseOrder/items/item[1]',
 XMLELEMENT(name "shipDate", '2009-01-20') as "x")
 WHERE ID = 1;

Resulting revalidation: Db2 revalidates the <items> element in the document.

54 Db2 11 for z/OS: pureXML Guide

XMLMODIFY operation: Add a country attribute to the <shipTo> element in the document in column
CONTENT:

UPDATE PURCHASEORDERV4
 SET CONTENT =
 XMLMODIFY (
 'declare namespace po="http://www.example.com/PO1";
 insert node $x/@country into /po:purchaseOrder/shipTo',
 XMLELEMENT(name "shipTo",
 XMLATTRIBUTES('US' as "country")) as "x")
 WHERE ID = 1;

Resulting revalidation: Db2 revalidates only the shipTo element in the document.

XMLMODIFY operation: Replace the value of the <shipDate> element in the first <item> element:

UPDATE PURCHASEORDERV4
 SET content = XMLMODIFY (
 'declare namespace po="http://www.example.com/PO1";
 replace value of node
 /po:purchaseOrder/items/item[1]/shipDate
 with "2009-02-15"')
 WHERE ID = 1;

Resulting revalidation: Db2 revalidates only the first <item> element.

XMLMODIFY operation: Delete the second <item> element in the document.

UPDATE PURCHASEORDERV4
 SET content = XMLMODIFY('delete nodes //item[2]')
 WHERE ID = 1;

Resulting revalidation: Db2 revalidates only the <items> element, which is the parent node of the deleted
<item> element.

XML schema validation with DSN_XMLVALIDATE
One way to do XML schema validation is by executing the DSN_XMLVALIDATE built-in function.

Before you can invoke DSN_XMLVALIDATE, all schema documents that make up an XML schema must be
registered in the built-in XML schema repository (XSR). An XML schema provides the rules for a valid XML
document.

DSN_XMLVALIDATE returns a value with the XML data type.

There are a number of forms of DSN_XMLVALIDATE:

DSN_XMLVALIDATE(string-expression)
DSN_XMLVALIDATE(xml-expression)
DSN_XMLVALIDATE(string-expression, varchar-expression)
DSN_XMLVALIDATE(xml-expression, varchar-expression)
DSN_XMLVALIDATE(string-expression1, string-expression2, string-expression3)
DSN_XMLVALIDATE(xml-expression1, string-expression2, string-expression3)

For all forms, the first parameter contains the document that you want to validate.

For forms with one parameter, the target namespace and optional schema location of the XML schema
must be in the root element of the instance document that you want to validate.

For forms with two parameters, the second parameter is the name of the schema object to use for
validation of the document. That object must be registered in the XML schema repository.

For forms with three parameters, the second and third parameter contain the names of a namespace URI
and a schema location hint that identify the XML schema object to use for validation of the document.
That object must be registered in the XML schema repository.

Related reference
DSN_XMLVALIDATE (Db2 SQL)

Chapter 2. Working with XML data 55

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_dsnxmlvalidate2.html

Moving from SYSFUN.DSN_XMLVALIDATE to SYSIBM.DSN_XMLVALIDATE
There are two versions of DSN_XMLVALIDATE: a user-defined function and a built-in function. The user-
defined function is deprecated. You should use the built-in function instead.

Procedure
To move from the DSN_XMLVALIDATE user-defined function to the DSN_XMLVALIDATE built-in function:
1. For applications that invoke DSN_XMLVALIDATE using the qualified name

SYSFUN.DSN_XMLVALIDATE:
a) Change the name to SYSIBM.DSN_XMLVALIDATE.
b) Prepare the applications again.

2. For applications that invoke DSN_XMLVALIDATE without using the qualified name, you do not need to
modify the applications. Db2 automatically uses the SYSIBM.DSN_XMLVALIDATE built-in function.

3. Optional: Remove the XMLPARSE function that surrounds DSN_XMLVALIDATE.

The SYSFUN.DSN_XMLVALIDATE user-defined function must be invoked from within the XMLPARSE
function. The SYSIBM.DSN_XMLVALIDATE built-in function does not need to be invoked from within
the XMLPARSE function.

Example

Suppose that an application calls the SYSFUN.DSN_XMLVALIDATE user-defined function:

EXEC SQL INSERT INTO T1(C1) VALUES (XMLPARSE (DOCUMENT
 SYSFUN.DSN_XMLVALIDATE(:xmldoc, 'SYSXSR.MYXMLSCHEMA')));

Update the INSERT statement like this to call the SYSIBM.DSN_XMLVALIDATE built-in function:

EXEC SQL INSERT INTO T1(C1) VALUES (
 SYSIBM.DSN_XMLVALIDATE(:xmldoc, 'SYSXSR.MYXMLSCHEMA'));

How Db2 chooses an XML schema for DSN_XMLVALIDATE
When you execute DSN_XMLVALIDATE as part of inserting into or updating an XML column, Db2 chooses
one XML schema to do validation.

Db2 uses the following process to determine which XML schema to use.

• If the DSN_XMLVALIDATE invocation includes an XML schema name, Db2 uses the XML schema that is
uniquely identified by the XML schema name.

• If the DSN_XMLVALIDATE invocation includes a target namespace or a schema location hint, or both,
Db2 searches the Db2 XML schema repository (XSR) for an XML schema name that corresponds to the
combination of the target namespace and schema location hint.

– If exactly one XML schema name corresponds to the combination of the target namespace and
schema location hint, Db2 uses that XML schema name.

– If multiple XML schema names correspond to the combination of the target namespace and schema
location hint, Db2 uses the XML schema with the most recent registration timestamp.

– If no XML schema name corresponds to the combination of the target namespace and schema
location hint, Db2 issues an error.

• If the DSN_XMLVALIDATE invocation does not specify an XML schema name or target namespace and
schema location hint, Db2 examines the instance document (the document that is being validated) to
determine the XML schema.

1. Db2 determines a target namespace and a schema location hint from the instance document, in the
following way:

56 Db2 11 for z/OS: pureXML Guide

– If the root element node in the instance document contains a namespace name, Db2 uses that
namespace name as the target namespace name.

– If the root element node in the instance document does not contain a namespace name, Db2 does
not use a target namespace name.

– If the root element node in the instance document contains an xsi:schemaLocation attribute,
Db2 uses its value as a schema location hint.

– If the root element node in the instance document contains an
xsi:noNamespaceSchemaLocation attribute, Db2 uses its value as the schema location hint
for schemas with no target namespace.

2. Db2 searches the Db2 XML schema repository (XSR) for an XML schema name that corresponds to
the target namespace, schema location hint, or both, from the instance document.

– If exactly one XML schema name corresponds to the combination of the target namespace and
schema location hint, Db2 uses that XML schema name.

– If multiple XML schema names correspond to the combination of the target namespace and
schema location hint, Db2 uses the XML schema with the most recent registration timestamp.

– If no XML schema name corresponds to the combination of the target namespace and schema
location hint, Db2 issues an error.

Example: Suppose that the XML schema repository (XSR) contains the following XML schemas.

XML schema name Target namespace Schema location

Timestamp when schema
was registered in the
XSR

PO1 http://
www.example.com/PO1

http://www.example.com/
PO1.xsd

2008-10-01
10:30:59.0100

PO2 http://
www.example.com/PO2

http://www.example.com/
PO2.xsd

2009-09-25
13:15:00.0200

PO3 No namespace http://www.example.com/
PO3.xsd

2009-06-25
13:15:00.0200

PO4 http://
www.example.com/PO2

http://www.example.com/
PO4.xsd

2009-10-25
13:15:00.0200

Also suppose that table PURCHASEORDERV5 is defined like this:

CREATE TABLE PURCHASEORDERV5(
 ID INT NOT NULL,
 CONTENT XML)

You execute the following INSERT statements:

INSERT INTO PURCHASEORDERV5 VALUES(1, 1
 DSN_XMLVALIDATE('<po:purchaseOrder xmlns:po="http://www.example.com/PO1">
 …
 </po:purchaseOrder>')
);
INSERT INTO PURCHASEORDERV5 VALUES(2, 2
 DSN_XMLVALIDATE('<po:purchaseOrder xmlns:po="http://www.example.com/PO2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/PO2
 http://www.example.com/PO2.xsd">
 …
 </po:purchaseOrder>','SYSXSR.PO2')
);
INSERT INTO PURCHASEORDERV5 VALUES(2, 3
 DSN_XMLVALIDATE('<po:purchaseOrder xmlns:po="http://www.example.com/PO2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/PO2
 http://www.example.com/PO4.xsd">
 …
 </po:purchaseOrder>',

Chapter 2. Working with XML data 57

 'http://www.example.com/PO2')
);
INSERT INTO purchase_orders VALUES(3, 4
 DSN_XMLVALIDATE(
 '<purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.example.com/PO3.xsd">
 …
 </purchaseOrder>')
);

The following table lists the XML schema that Db2 uses, and the reasons for that choice.

Insert
statement
number

XML schemas
that are used
for validation,
in order of
choice Reason

 1 PO1 The DSN_XMLVALIDATE invocation does not specify an XML schema
or target namespace and schema location hint, so Db2 uses the
information in the instance document. The namespace name in the
root element of the instance document is http://www.example.com/
PO1. This name matches only the target namespace for XML schema
PO1.

 2 PO2 The DSN_XMLVALIDATE invocation specifies XML schema
SYSXSR.PO2.

 3 PO4 The DSN_XMLVALIDATE invocation specifies namespace http://
www.example.com/PO2. Two XML schemas, PO2 and PO4, have that
target namespace. Db2 uses PO4, because it has the later timestamp.

 4 PO3 The DSN_XMLVALIDATE invocation does not specify an XML schema
or target namespace and schema location hint, so Db2 uses the
information in the instance document. The root element node in the
instance document contains an xsi:noNamespaceSchemaLocation
attribute with value http://www.example.com/PO3.xsd, so Db2 uses
XML schema PO3, which has no target namespace, and the schema
location http://www.example.com/PO3.xsd.

How to determine whether an XML document has been validated
You can use the SQL XMLXSROBJECTID scalar function to determine whether an XML document that
is stored in a table has undergone XML validation, and which XML schema was used to validate that
document.

XMLXSROBJECTID returns the XSR object identifier of the XML schema that was used to validate
the input XML document. The XSR object identifier corresponds to the XSROBJECTID column in the
SYSIBM.XSROBJECTS catalog table. After you call XMLXSROBJECTID, you can use the returned value
to query SYSIBM.XSROBJECTS for the XML schema information. If the XML document has not been
validated, XMLXSROBJECTID returns 0.

Examples

Example: The following SQL statement calls XMLXSROBJECTID to determine which XML documents
in the INFO column of the CUSTOMER table have not been validated. The statement then calls
DSN_XMLVALIDATE to validate those documents against XML schema SYSXSR.P01.

UPDATE CUSTOMER
 SET INFO = DSN_XMLVALIDATE(INFO, 'SYSXSR.PO1')
 WHERE XMLXSROBJECTID(INFO)=0

58 Db2 11 for z/OS: pureXML Guide

Example: The following SQL statement retrieves the target namespaces and XML schema names for the
XML schemas that were used to validate XML documents in the INFO column of the CUSTOMER table.

SELECT DISTINCT S.XSROBJECTNAME, S.TARGETNAMESPACE
 FROM CUSTOMER C, XSROBJECTS S
 WHERE XMLXSROBJECTID(INFO) = S.XSROBJECTID

Casts between XML data types and SQL data types
Casting of SQL data types to XML data types occurs implicitly. The XMLCAST specification simplifies the
task of converting an XML value to an SQL data type.

For casting from an XML schema data type to an SQL data type, the XMLCAST specification eliminates
the need to serialize an XML value before casting it to an SQL data type. Casting of an XML schema data
type to an SQL data type is useful if you want to return the results of the XMLQUERY function as SQL for
further processing in an SQL statement, such as comparing XML values to SQL values or using XML values
to order result tables.

You can cast the result of XMLQUERY to an SQL data type only when the XQuery expression that is
specified in the XMLQUERY function returns a sequence that contains one item.

Implicit casting of an SQL data type to an XML schema type occurs in the XMLEXISTS predicate or the
XMLQUERY or XMLTABLE function, when a column value is passed to an XQuery expression. Although you
can use the XMLCAST specification to cast an SQL data type to an XML schema data type, it is usually
unnecessary.

Related concepts
XMLEXISTS predicate for querying XML data
The XMLEXISTS predicate can be used to restrict the set of rows that a query returns, based on the values
in XML columns.
XMLQUERY function for retrieval of portions of an XML document
XMLQUERY is an SQL scalar function that lets you execute an XQuery expression from within an SQL
context.
XMLCAST in SQLJ applications (Db2 Application Programming for Java)
Casting between data types (Db2 SQL)
Related reference
XMLCAST specification (Db2 SQL)

Examples of casts from XML schema data types to SQL data types
You can use the XMLCAST specification to cast an XML schema data type to an SQL data type.

Example: casting to compare XML values to SQL values
Suppose that the PORDER column of the PURCHASEORDER table contains the following document:

<PurchaseOrder xmlns="http://posample.org" PoNum="5000"
 OrderDate="2007-02-18" Status="Unshipped">
 <item>
 <partid>100-100-01</partid>
 <name>Snow Shovel, Basic 22"</name>
 <quantity>3</quantity>
 <price>9.99</price>
 </item>
 <item>
 <partid>100-103-01</partid>
 <name>Snow Shovel, Super Deluxe 26" Wide</name>
 <quantity>5</quantity>
 <price>49.99</price>
 </item>
</PurchaseOrder>

Chapter 2. Working with XML data 59

https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0053603.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_castingbetweendatatypes.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_xmlcastspecification.html

Use the XMLCAST specification to cast a value with the xs:string type to a value with the VARCHAR type so
that you can compare the values.

SELECT P.POID FROM PURCHASEORDER P, PRODUCT R WHERE
 R.PID =
 XMLCAST(XMLQUERY(
 'declare default element namespace "http://posample.org";
 $d/PurchaseOrder/item[name="Snow Shovel, Basic 22"]/partid'
 PASSING P.PORDER AS "d") AS VARCHAR(10))

The result table of the SELECT statement is:

POID

5000

Example: casting to order a result table
Suppose that the sample PRODUCT table has the following rows:

PID DESCRIPTION

100-100-01 <product xmlns="http://posample.org" pid="100-100-01" >
 <description>
 <name>Snow Shovel, Basic 22"</name>
 <details>Basic Snow Shovel, 22" wide, straight handle
with D-Grip</details>
 <price>9.99</price>
 <weight>1 kg</weight>
 </description>
</product>

100-101-01 <product xmlns="http://posample.org" pid="100-101-01" >
 <description>
 <name>Snow Shovel, Deluxe 24"</name>
 <details>A Deluxe Snow Shovel, 24 inches wide, ergonomic
curved handle with D-Grip</details>
 <price>19.99</price>
 <weight>2 kg</weight>
 </description>
</product

100-103-01 <product xmlns="http://posample.org" pid="100-103-01" >
 <description>
 <name>Snow Shovel, Super Deluxe 26"</name>
 <details>Super Deluxe Snow Shovel, 26" wide, ergonomic
battery heated curved handle with upgraded D-Grip</details>
 <price>49.99</price>
 <weight>3 kg</weight>
 </description>
</product>

100-201-01 <product xmlns="http://posample.org" pid="100-201-01" >
 <description>
 <name>Ice Scraper, Windshield 4" Wide</name>
 <details>Basic Ice Scraper 4" wide, foam handle</details>
 <price>3.99</price>
 </description>
</product>

Use the XMLCAST specification to cast values in XML documents in the sample PRODUCT table to an SQL
data type so that you can use those values in an ORDER BY clause.

SELECT PID
 FROM PRODUCT
 ORDER BY
 XMLCAST(XMLQUERY ('declare default element namespace "http://posample.org";

60 Db2 11 for z/OS: pureXML Guide

 $d/product/description/name'
 PASSING DESCRIPTION AS "d") AS VARCHAR(128))

The result table of the SELECT statement is:

PID

100-201-01

100-100-01

100-101-01

100-103-01

Example: casting an attribute node for retrieval of an attribute value
When you retrieve an attribute value, you cannot serialize the attribute node directly. For example, this
query results in an error:

SELECT XMLQUERY('declare default element namespace "http://posample.org";
/PurchaseOrder/@PoNum' PASSING PORDER)
 FROM PURCHASEORDER
 WHERE POID=5000

Instead, you can select the attribute node, and then use XMLCAST to serialize the selected node before
retrieving the attribute value. For example:

SELECT XMLCAST(XMLQUERY('declare default element namespace "http://posample.org";
/PurchaseOrder/@PoNum' PASSING PORDER) as INT)
 FROM PURCHASEORDER
 WHERE POID=5000

Example: casting xs:date values to the DATE type
If you cast an xs:date value without a time zone component to a DATE type, the result is the same as the
input. For example:

SELECT XMLCAST(XMLQUERY(' "2007-10-12" ') AS DATE)
 FROM SYSIBM.SYSDUMMY1

The result is 2007-10-12.

If you cast an xs:date value with a time zone component to a DATE type, the result is adjusted to UTC
time. For example:

SELECT XMLCAST(XMLQUERY(' "2007-10-12+13:00" ') AS DATE)
 FROM SYSIBM.SYSDUMMY1

The input value is assumed to be at the beginning of the day on 2007-10-12, in a time zone that is 13
hours ahead of UTC time. Therefore, after the date is adjusted to UTC time, the result is 2007-10-11.

Example: casting xs:time values to the TIME type
If you cast an xs:time value without a time zone component to a TIME type, the result is the input value
with the fractional part truncated. For example:

SELECT XMLCAST(XMLQUERY(' "13:20:15.054" ') AS TIME)
 FROM SYSIBM.SYSDUMMY1

The result is 13:20:15.

If you cast an xs:time value with a time zone component to a TIME type, the result is adjusted to UTC
time, and the fractional part is truncated. For example:

Chapter 2. Working with XML data 61

SELECT XMLCAST(XMLQUERY(' "13:20:15.054+05:00" ') AS TIME)
 FROM SYSIBM.SYSDUMMY1

The input value is in a time zone that is five hours ahead of UTC time. Therefore, after the time is adjusted
to UTC time, the result is 08:20:15.

Example: casting xs:dateTime values to the TIMESTAMP or TIMESTAMP(p) type
If you cast an xs:dateTime value without a time zone component to a TIMESTAMP(p) type, and the
number of fractional digits in the input value is less than p, the result is the input value with the fractional
part expanded to p digits. If p is not specified, the default precision for the result is 6. For example:

SELECT XMLCAST(XMLQUERY('xs:dateTime("2009-03-25T05:01:01.123456789")')
 AS TIMESTAMP(12))
 FROM SYSIBM.SYSDUMMY1

The result is 2009-03-25 05:01:01.123456789000.

If you cast an xs:dateTime value without a time zone component to a TIMESTAMP(p) type, and the
number of fractional digits in the input value is greater than p, the result is the input value with the
fractional part truncated to p digits. If p is not specified, the default precision for the result is 6. For
example:

SELECT XMLCAST(XMLQUERY('xs:dateTime("2009-03-25T05:01:01.123456789")')
 AS TIMESTAMP)
 FROM SYSIBM.SYSDUMMY1

The result is 2009-03-25 05:01:01.123456.

If you cast an xs:dateTime value with a time zone component to a TIMESTAMP(p) type, and the number of
fractional digits in the input value is less than p, the result is adjusted to UTC time, and the fractional part
is expanded to p digits. If p is not specified, the default precision for the result is 6. For example:

SELECT XMLCAST(XMLQUERY(' "2009-03-25T05:01:01.123456789+08:00" ')
 AS TIMESTAMP(12))
 FROM SYSIBM.SYSDUMMY1

The input value is in a time zone that is eight hours ahead of UTC time. Therefore, after the date and time
are adjusted to UTC time, the result is 2009-03-24 21:01:01.123456789000.

If you cast an xs:dateTime value with a time zone component to a TIMESTAMP(p) type, and the number of
fractional digits in the input value is greater than p, the result is adjusted to UTC time, and the fractional
part is truncated to p digits. If p is not specified, the default precision for the result is 6. For example:

SELECT XMLCAST(XMLQUERY(' "2009-03-25T05:01:01.123456789+08:00" ')
 AS TIMESTAMP)
 FROM SYSIBM.SYSDUMMY1

The input value is in a time zone that is eight hours ahead of UTC time. Therefore, after the date and time
are adjusted to UTC time, the result is 2009-03-24 21:01:01.123456.

Retrieving XML data
You can retrieve entire XML documents from XML columns by using an SQL SELECT statement.
Alternatively, you can use SQL with XML extensions (SQL/XML) to retrieve portions of documents.

The SQL/XML functions that supports retrieval of portions of XML documents are XMLQUERY and
XMLTABLE. To filter table rows by XML document content, use the SQL/XML XMLEXISTS predicate.

Related concepts
XML serialization

62 Db2 11 for z/OS: pureXML Guide

XML serialization is the process of converting XML data from its internal representation in a Db2 table to
the textual XML format that it has in an application.

Retrieval of an entire XML document from an XML column
Retrieval of an entire XML document from an XML column is similar to retrieval of a value from a LOB
column.

Retrieval of an entire XML document is different from retrieval of a LOB value in the following ways:

• LOB values can have locators, but XML values cannot.

This means that you need to do one of these things:

– Allocate enough application storage to retrieve entire XML values, use file reference variables, or use
the SQL FETCH WITH CONTINUE statement.

– Invoke XMLSERIALIZE to convert the XML column data into a CLOB or BLOB data type, and fetch the
result into a LOB locator.

• XML values can have internal encoding as well as external encoding.

With LOB values, you need to consider only whether there are differences between the database server
encoding and the application encoding when you retrieve data. XML values can have internal encoding
as well as application encoding (external encoding).

Related reference
FETCH (Db2 SQL)

XMLQUERY function for retrieval of portions of an XML document
XMLQUERY is an SQL scalar function that lets you execute an XQuery expression from within an SQL
context.

You can pass variables to the XQuery expression specified in XMLQUERY. XMLQUERY returns an XML
value, which is an XML sequence. This sequence can be empty or can contain one or more items.

When you execute XQuery expressions from within an XMLQUERY function, you can:

• Retrieve parts of stored XML documents, instead of entire XML documents.
• Enable XML data to participate in SQL queries.
• Operate on both relational and XML data in the same SQL statement.
• Apply further SQL processing to the returned XML values (for example, ordering results with the ORDER

BY clause of a subselect), after you use XMLCAST to cast the results to a non-XML type.

XQuery is case-sensitive, so you need to ensure that the case of variables that you specify in an
XMLQUERY function and in its XQuery expression match.

Related reference
XMLQUERY (Db2 SQL)

Non-empty sequences returned by XMLQUERY
If evaluation of the XQuery expression that you specify in XMLQUERY results in a non-empty sequence,
the XMLQUERY function returns that sequence.

Example: Suppose that two of the documents in the INFO column of the sample CUSTOMER table look
like these:

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1002">
 <name>Jim Noodle<⁄name>
 <addr country="Canada">
 <street>25 EastCreek<⁄street>
 <city>Markham<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N9C 3T6<⁄pcode-zip>
 <⁄addr>

Chapter 2. Working with XML data 63

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_fetch.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlquery.html

 <phone type="work">905-555-7258<⁄phone>
<⁄customerinfo>

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1003">
 <name>Robert Shoemaker<⁄name>
 <addr country="Canada">
 <street>1596 Baseline<⁄street>
 <city>Aurora<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N8X 7F8<⁄pcode-zip>
 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>
 <phone type="home">416-555-2937<⁄phone>
 <phone type="cell">905-555-8743<⁄phone>
 <phone type="cottage">613-555-3278<⁄phone>
<⁄customerinfo>

You execute the following statement:

SELECT CID, XMLQUERY ('declare default element namespace "http://posample.org";
 /customerinfo/phone' passing INFO)
 AS "PHONE FROM INFO"
 FROM CUSTOMER
 WHERE CID IN (1002,1003)

The result table contains the following two rows:

Table 9. Example of a result table from XMLQUERY that returns non-empty sequences

CID PHONE FROM INFO

100
2

<?xml version="1.0" encoding="IBM037"?><phone xmlns="http://posample.org"
type="work">905-555-7258</phone>

100
3

<?xml version="1.0" encoding="IBM037"?><phone xmlns="http://
posample.org" type="work">905-555-7258</phone><phone xmlns="http://
posample.org" type="home">416-555-2937</phone><phone xmlns="http://
posample.org" type="cell">905-555-8743</phone><phone xmlns="http://posample.org"
type="cottage">613-555-3278</phone>

The first row contains a sequence of one <phone> element, and the second row has a sequence of four
<phone> elements. This result demonstrates that when XMLQUERY returns a sequence that contains
more than one element, the serialization process concatenates the elements into a single string. The
result in the second row is not a well-formed document. Ensure that any application that receives this
result can properly handle this behavior.

Related reference
XMLQUERY (Db2 SQL)

Empty sequences returned by XMLQUERY
XMLQUERY returns an empty sequence if the XQuery expression returns an empty sequence.

Example: In the following query, XMLQUERY returns an empty sequence for each row of the CUSTOMER
table that does not have a <city> element with a value of Aurora in the INFO column.

SELECT Cid, XMLQUERY ('declare default element namespace "http://posample.org";
 //addr[city="Aurora"]' passing INFO)
AS "ADDRESS FROM INFO"
FROM CUSTOMER

Only one XML document that contains a <city> element with the value of Aurora. The following table
results from the previous SELECT statement:

Table 10. Example of a result table from XMLQUERY that returns empty sequences

CID ADDRESS FROM INFO

1000 <?xml version="1.0" encoding="IBM037"?>

64 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlquery.html

Table 10. Example of a result table from XMLQUERY that returns empty sequences (continued)

CID ADDRESS FROM INFO

1001 <?xml version="1.0" encoding="IBM037"?>

1002 <?xml version="1.0" encoding="IBM037"?>

1003 <?xml version="1.0" encoding="IBM037"?><addr
xmlns="http:⁄⁄posample.org" country="Canada"><street>1596
Baseline<⁄street><city>Aurora<⁄city><prov-state>Ontario<⁄prov-
state><pcode-zip>N8X-7F8<⁄pcode-zip><⁄addr>

1004 <?xml version="1.0" encoding="IBM037"?>

1005 <?xml version="1.0" encoding="IBM037"?>

Empty sequences are returned for rows that do not have a <city> element with the value of Aurora. Empty
sequences are returned as strings of length 0, rather than NULL values. The <addr> element is returned in
the third row, however, because it satisfies the XQuery expression.

You can filter out the rows with empty sequences by applying a predicate, such as the XMLEXISTS
predicate.

Example: Rewrite the previous query to return only rows with non-empty sequences:

SELECT Cid, XMLQUERY ('declare default element namespace "http://posample.org";
 /customerinfo/addr' passing c.INFO)
 AS "ADDRESS FROM INFO"
FROM Customer as c
WHERE XMLEXISTS ('declare default element namespace "http://posample.org";
 //addr[city="Aurora"]' passing c.INFO)

The table that results from this query is as follows:

Table 11. Result table

CID ADDRESS FROM INFO

1003 <?xml version="1.0" encoding="IBM037"?><addr
xmlns="http:⁄⁄posample.org" country="Canada"><street>1596
Baseline<⁄street><city>Aurora<⁄city><prov-state>Ontario<⁄prov-
state><pcode-zip>N8X-7F8<⁄pcode-zip><⁄addr>

Related concepts
XMLEXISTS predicate for querying XML data
The XMLEXISTS predicate can be used to restrict the set of rows that a query returns, based on the values
in XML columns.
Related reference
XMLQUERY (Db2 SQL)

XMLEXISTS predicate for querying XML data
The XMLEXISTS predicate can be used to restrict the set of rows that a query returns, based on the values
in XML columns.

The XMLEXISTS predicate specifies an XQuery expression. If the XQuery expression returns an empty
sequence, the value of the XMLEXISTS predicate is false. Otherwise, XMLEXISTS returns true. Rows that
correspond to an XMLEXISTS value of true are returned.

XQuery is case-sensitive, so you need to ensure that the variables that you specify in an XMLEXISTS
function and in its XQuery expression have the same case.

Chapter 2. Working with XML data 65

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlquery.html

Important: Because a logical expression or a comparison expression always results in a boolean value
of true or false, an XMLEXISTS predicate with a top-level logical expression or comparison expression is
always true. For example, the following XMLEXISTS predicate is always true:

XMLEXISTS('//addr/city="Toronto"')

This is usually not the result that you need when you use an XMLEXISTS predicate to filter results.

Example of an XMLEXISTS predicate: Return only those rows from the sample CUSTOMER table for
which the <city> value in the INFO column is Toronto and the Cid attribute value in the INFO column is
1004. The XMLEXISTS predicates in the following SELECT statement return true for the appropriate INFO
values.

SELECT Cid, Info
FROM CUSTOMER
WHERE XMLEXISTS ('declare default element namespace "http:⁄⁄posample.org";
 ⁄⁄addr[city="Toronto"]' passing INFO)
AND XMLEXISTS ('declare default element namespace "http:⁄⁄posample.org";
 ⁄customerinfo[@Cid="1004"]' passing INFO)

The result table contains the following rows:

Table 12. Example of a result table from a SELECT with an XMLEXISTS predicate

CID INFO

100
4

<?xml version="1.0" encoding="IBM037"?><customerinfo xmlns="http://posample.org"
Cid=''1004''><name>Matt Foreman</name> <addr country=''Canada''><street>1596 Baseline</
street> <city>Toronto</city><prov-state>Ontario</prov-state> <pcode-zip>M3Z-5H9</
pcode-zip></addr> <phone type=''work''>905-555-4789</phone> <phone
type=''home''>416-555-3376</phone> <assistant><name>Gopher Runner</name> <phone
type=''home''>416-555-3426</phone> </assistant> </customerinfo>

100
5

<?xml version="1.0" encoding="IBM037"?><customerinfo xmlns="http://posample.org"
Cid=''1004''><name>Matt Foreman</name> <addr country=''Canada''><street>1596 Baseline</
street> <city>Toronto</city><prov-state>Ontario</prov-state> <pcode-zip>M3Z-5H9</
pcode-zip></addr> <phone type=''work''>905-555-4789</phone> <phone
type=''home''>416-555-3376</phone> <assistant><name>Gopher Runner</name> <phone
type=''home''>416-555-3426</phone> </assistant> </customerinfo>

Related reference
XMLEXISTS predicate (Db2 SQL)

Constant and parameter marker passing to XMLEXISTS and XMLQUERY
You can specify XQuery variables as part of the XQuery expression in the XMLEXISTS predicate and the
XMLQUERY function.

You pass the values into these variables through the passing clause. These values are SQL expressions.

Because the values that are passed to the XQuery expression are non-XML values, they must be cast,
either implicitly or explicitly, to types that are supported by XQuery.

Example: Implicit casting
In the following query, the SQL character string constant 'Aurora', which is not an XML type, is implicitly
cast to an XML type in the XMLEXISTS predicate. Following the implicit cast, the constant has the XML
schema subtype of xs:string, and is bound to the variable $cityName. The $cityName variable can then be
used in the predicate of the XQuery expression.

SELECT XMLQUERY ('declare default element namespace "http://posample.org";
 $d/customerinfo/addr' passing c.INFO as "d")
FROM Customer as c
WHERE XMLEXISTS('declare default element namespace "http://posample.org";

66 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_xmlexistspredicate.html

 $d//addr[city=$cityName]'
 passing c.INFO as "d",
 'Aurora' AS "cityName")

Example: Explicit casting
In the following query, the XMLCAST specification casts a string constant to the XML data type.

SELECT XMLQUERY ('declare default element namespace "http://posample.org";
 $d/customerinfo/addr' passing c.INFO as "d")
FROM Customer as c
WHERE XMLEXISTS('declare default element namespace "http://posample.org";
 $d//addr[city=$cityName]'
 passing c.INFO as "d",
 XMLCAST('San Jose' as XML) AS "cityName")

Related concepts
XMLQUERY function for retrieval of portions of an XML document
XMLQUERY is an SQL scalar function that lets you execute an XQuery expression from within an SQL
context.
Related reference
XMLQUERY (Db2 SQL)
XMLEXISTS predicate (Db2 SQL)

XMLTABLE function for returning XQuery results as a table
The XMLTABLE SQL/XML function returns a table from the evaluation of XQuery expressions.

XQuery expressions normally return values as a sequence. However, XMLTABLE lets you execute an
XQuery expression and return values as a table. The table that is returned can contain columns of any SQL
data type, including the XML data type.

You can pass variables to the row XQuery expression that is specified in XMLTABLE. The result of the
row XQuery expression defines the portions of an XML document that you use to define a row of the
returned table. You specify column XQuery expressions in the COLUMNS clause of the XMLTABLE function
to generate the column values of the resulting table. In the COLUMNS clause, you define characteristics of
a column by specifying the column name, data type, and how the column value is generated. Alternatively,
you can omit the COLUMNS clause and let Db2 generate a single, unnamed XML column.

You can include an XMLNAMESPACES function as the first argument of XMLTABLE, to specify the XML
namespace for all XQuery expressions in the XMLTABLE function. Namespace declarations in individual
XQuery expressions override the XMLNAMESPACES argument.

You can specify the contents of a result table column through a column XQuery expression that you
specify in the PATH clause of XMLTABLE. If you do not specify a PATH clause, Db2 uses the result table
column name as the PATH argument. For example, if a result table column name is @partNum, and the
input XML documents must have an attribute named partNum, the result table column values are the
values of the partNum attribute.

If the column XQuery expression that defines a result table column returns an empty sequence,
XMLTABLE returns a NULL value in the result table column. XMLTABLE lets you supply a default value
instead of a NULL value. You do this by specifying a DEFAULT clause in the column definition.

If you want to generate a sequence number for each row that XMLTABLE generates, you can include a
column definition with the FOR ORDINALITY clause. The FOR ORDINALITY clause causes XMLTABLE to
generate a column with values that start at 1. If a single document generates more than one row, the
sequence number is incremented by 1. For example, if an XML document generates three result table
rows, the sequence numbers for those rows are 1, 2, and 3.

Important: If the column XQuery expression that is specified in the PATH option of XMLTABLE returns a
sequence of more than one item, the data type of the result table column must be XML.

Chapter 2. Working with XML data 67

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlquery.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_xmlexistspredicate.html

Related reference
XMLTABLE (Db2 SQL)

XMLTABLE advantages
In certain situations, XQuery expression results are easier to process if they are in a table than if they are
in a sequence.

Returning a table instead of a sequence enables the following operations to be performed from within an
SQL query context:

• Iteration over results of an XQuery expression from within an SQL fullselect

For example, in the following query, the SQL fullselect iterates over the table that results from executing
the XQuery expression //customerinfo in XMLTABLE.

SELECT X.*
 FROM CUSTOMER,
 XMLTABLE (XMLNAMESPACES(DEFAULT 'http://posample.org'),
 '//customerinfo'
 PASSING CUSTOMER.INFO
 COLUMNS
 "CUSTNAME" VARCHAR(30) PATH 'name',
 "CITY" VARCHAR(30) PATH 'addr/city') X

• Insertion of values from stored XML documents into tables

This technique is a simple form of decomposition, where decomposition is the process of storing
fragments of an XML document in columns of relational tables.

• Individual processing of items in a sequence

If you return the items in a sequence as a single row, with each item in a separate column, it is easier to
process the individual items.

• Sorting on values from an XML document

For example, in the following query, results are sorted by the customer names that are stored in XML
documents in the INFO column of the CUSTOMER table.

SELECT X.*
 FROM CUSTOMER,
 XMLTABLE (XMLNAMESPACES(DEFAULT 'http://posample.org'),
 '//customerinfo'
 PASSING CUSTOMER.INFO
 COLUMNS
 "CUSTNAME" VARCHAR(30) PATH 'name',
 "CITY" VARCHAR(30) PATH 'addr/city') X
 ORDER BY X.CUSTNAME

• Storing of some XML values as relational and some values as XML

Related concepts
XMLTABLE example: Inserting values returned from XMLTABLE
The XMLTABLE SQL/XML function can be used to retrieve values from within stored XML documents. The
retrieved values can then be inserted into a table.

XMLTABLE example: Inserting values returned from XMLTABLE
The XMLTABLE SQL/XML function can be used to retrieve values from within stored XML documents. The
retrieved values can then be inserted into a table.

For example, the following XML documents are stored in the sample CUSTOMER table:

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1001">
 <name>Kathy Smith<⁄name>
 <addr country="Canada">
 <street>25 EastCreek<⁄street>
 <city>Markham<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N9C 3T6<⁄pcode-zip>

68 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmltable.html

 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>
<⁄customerinfo>

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1003">
 <name>Robert Shoemaker<⁄name>
 <addr country="Canada">
 <street>1596 Baseline<⁄street>
 <city>Aurora<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N8X-7F8<⁄pcode-zip>
 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>
 <phone type="home">416-555-2937<⁄phone>
 <phone type="cell">905-555-8743<⁄phone>
 <phone type="cottage">613-555-3278<⁄phone>
<⁄customerinfo>

You want to insert values from these documents into a table with the following definition:

CREATE TABLE CUSTADDR (CUSTNAME VARCHAR(30),
 CUSTSTREET VARCHAR(30),
 CUSTCITY VARCHAR(30)
 CUSTSTATE VARCHAR(30),
 CUSTZIP VARCHAR(30))

The following INSERT statement, which uses XMLTABLE, populates CUSTADDR with values from the XML
documents:

INSERT INTO CUSTADDR
 SELECT X.*
 FROM CUSTOMER,
 XMLTABLE (XMLNAMESPACES(DEFAULT 'http:⁄⁄posample.org'),
 '//customerinfo'
 PASSING CUSTOMER.INFO
 COLUMNS
 "CUSTNAME" VARCHAR(30) PATH 'name',
 "CUSTSTREET" VARCHAR(30) PATH 'addr/street',
 "CUSTCITY" VARCHAR(30) PATH 'addr/city',
 "CUSTSTATE" VARCHAR(30) PATH 'addr/prov-state',
 "CUSTZIP" VARCHAR(30) PATH 'addr/pcode-zip'
) as X

After you execute the INSERT statement, the CUSTADDR table looks like this:

Table 13. Contents of the CUSTADDR table after insert of a result table generated by XMLTABLE

CUSTNAME CUSTSTREET CUSTCITY CUSTSTATE CUSTZIP

Kathy Smith 25 EastCreek Markham Ontario N9C 3T6

Robert
Shoemaker

1596 Baseline Aurora Ontario N8X-7F8

XMLTABLE example: Returning one row for each occurrence of an item
If an XML document contains multiple occurrences of an element, you can use XMLTABLE to generate a
row for each occurrence of the element.

For example, the following XML documents are stored in the sample CUSTOMER table:

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1001">
 <name>Kathy Smith<⁄name>
 <addr country="Canada">
 <street>25 EastCreek<⁄street>
 <city>Markham<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N9C 3T6<⁄pcode-zip>
 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>
<⁄customerinfo>

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1003">
 <name>Robert Shoemaker<⁄name>
 <addr country="Canada">

Chapter 2. Working with XML data 69

 <street>1596 Baseline<⁄street>
 <city>Aurora<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N8X 7F8<⁄pcode-zip>
 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>
 <phone type="home">416-555-2937<⁄phone>
 <phone type="cell">905-555-8743<⁄phone>
 <phone type="cottage">613-555-3278<⁄phone>
<⁄customerinfo>

You can use a query like this to create a table in which every phone value is returned in a separate row:

SELECT X.*
FROM CUSTOMER C, XMLTABLE (XMLNAMESPACES(DEFAULT 'http:⁄⁄posample.org'),
 '$cust⁄customerinfo⁄phone' PASSING C.INFO as "cust"
 COLUMNS "CUSTNAME" VARCHAR(30) PATH '..⁄name',
 "PHONETYPE" VARCHAR(30) PATH '@type',
 "PHONENUM" VARCHAR(15) PATH '.') as X
 WHERE CID=1001 OR CID=1003

The result table of the SELECT statement is:

Table 14. Result table from a query that uses XMLTABLE to retrieve multiple occurrences of an item

CUSTNAME PHONETYPE PHONENUM

Kathy Smith work 905-555-7258

Robert Shoemaker work 905-555-7258

Robert Shoemaker home 416-555-2937

Robert Shoemaker cell 905-555-8743

Robert Shoemaker cottage 613-555-3278

The following SELECT statement returns each phone element as an XML document, instead of a string
value:

SELECT X.*
FROM CUSTOMER C, XMLTABLE (xmlnamespaces (DEFAULT 'http:⁄⁄posample.org'),
 '$cust⁄customerinfo⁄phone' PASSING C.INFO as "cust"
 COLUMNS "CUSTNAME" CHAR(30) PATH '..⁄name',
 "PHONETYPE" CHAR(30) PATH '@type',
 "PHONENUM" XML PATH '.') as X
 WHERE CID=1001 OR CID=1003

This query yields the following results for the two XML documents:

Table 15. Result table

CUSTNAME PHONETYPE PHONENUM

Kathy Smith work <phone xmlns="http:⁄⁄posample.org"
type="work">905-555-7258<⁄phone>

Robert Shoemaker work <phone xmlns="http:⁄⁄posample.org"
type="work">905-555-7258<⁄phone>

Robert Shoemaker home <phone xmlns="http:⁄⁄posample.org"
type="work">416-555-2937<⁄phone>

Robert Shoemaker cell <phone xmlns="http:⁄⁄posample.org"
type="work">905-555-8743<⁄phone>

Robert Shoemaker cottage <phone xmlns="http:⁄⁄posample.org"
type="work">613-555-3278<⁄phone>

70 Db2 11 for z/OS: pureXML Guide

XMLTABLE example: Specifying a default value for a column in the result table
You can specify a default value for any column in the XMLTABLE result table by using a DEFAULT clause.
The default value is used if the XQuery expression that defines the column returns an empty sequence.

For example, the following XML documents are stored in the sample CUSTOMER table. Neither document
has an age element.

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1001">
 <name>Kathy Smith<⁄name>
 <addr country="Canada">
 <street>25 EastCreek<⁄street>
 <city>Markham<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N9C 3T6<⁄pcode-zip>
 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>
<⁄customerinfo>

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1003">
 <name>Robert Shoemaker<⁄name>
 <addr country="Canada">
 <street>1596 Baseline<⁄street>
 <city>Aurora<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N8X 7F8<⁄pcode-zip>
 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>
 <phone type="home">416-555-2937<⁄phone>
 <phone type="cell">905-555-8743<⁄phone>
 <phone type="cottage">613-555-3278<⁄phone>
<⁄customerinfo>

You can use a query like this to create a result table in which the column value is "***No age***" if a
document has no age for a customer:

SELECT X.*
 FROM CUSTOMER C, XMLTABLE (XMLNAMESPACES(DEFAULT 'http://posample.org'),
 '$cust/customerinfo' PASSING C.INFO as "cust"
 COLUMNS "CUSTNAME" VARCHAR(30) PATH './name',
 "AGE" VARCHAR(30) PATH './age' DEFAULT '***No age***') AS X
 WHERE CID=1001 OR CID=1003

The result table of the SELECT statement is:

Table 16. Result table from a query in which XMLTABLE has a default value for an item

CUSTNAME AGE

Kathy Smith ***No age***

Robert Shoemaker ***No age***

XMLTABLE example: Specifying an ordinality column in the result table
You can specify that the result table of an XMLTABLE invocation includes an ordinality column.

An ordinality column has the following properties:

• Has the BIGINT data type
• Starts at one for each document that generates a result table row
• Is incremented by one for each result table row that is generated by a single document

For example, the following XML document is stored in the sample CUSTOMER table.

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1003">
 <name>Robert Shoemaker<⁄name>
 <addr country="Canada">
 <street>1596 Baseline<⁄street>
 <city>Aurora<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N8X 7F8<⁄pcode-zip>
 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>

Chapter 2. Working with XML data 71

 <phone type="home">416-555-2937<⁄phone>
 <phone type="cell">905-555-8743<⁄phone>
 <phone type="cottage">613-555-3278<⁄phone>
<⁄customerinfo>

You can use a query like this to create an ordinality column in the XMLTABLE result table:

SELECT X.*
 FROM CUSTOMER C, XMLTABLE (XMLNAMESPACES(DEFAULT 'http://posample.org'),
 '$cust/customerinfo/phone' PASSING C.INFO as "cust"
 COLUMNS "SEQNO" FOR ORDINALITY,
 "PHONE TYPE" VARCHAR(15) PATH './@type',
 "PHONE NUMBER" VARCHAR(15) PATH '.'
) AS X
 WHERE CID=1003

The result table of the SELECT statement is:

Table 17. Result table from a query in which XMLTABLE has an ordinality column

SEQNO PHONE TYPE PHONE NUMBER

1 work 905-555-7258

2 home 416-555-2937

3 cell 905-555-8743

4 cottage 613-555-3278

XML support in native SQL routines
Native SQL routines support parameters and variables with the XML data type.

XML parameters can be used in SQL statements in the same way as variables of any other data type.
In addition, variables with the XML data type can be passed as parameters to XQuery expressions in
XMLEXISTS, XMLQUERY and XMLTABLE expressions.

An XML value returned from a remote site within an SQL procedural language stored procedure must be
well-formed.

Example: native SQL procedure The following code demonstrates the declaration, use, and assignment
of XML parameters and variables in a native SQL procedure. The example uses table T1, which has one
column named C1, which has the XML data type.

CREATE PROCEDURE PROC1(IN PARM1 XML, IN PARM2 VARCHAR(32000))
 LANGUAGE SQL
 BEGIN
 DECLARE var1 XML; 1
 IF(XMLEXISTS('$x/ITEM[value < 200]' passing by ref PARM1 as "x"))THEN
 INSERT INTO T1 VALUES(PARM1); 2
 END IF;
 SET var1 = 3
 XMLDOCUMENT(XMLELEMENT(NAME "ORDER",
 XMLCONCAT(PARM1, var1)));
 INSERT INTO T1 VALUES(var1); 4
 END #

The SQL procedure performs the following operations on XML parameters and variables:

1. Declares an XML variable named var1.
2. Checks whether the value of XML parameter PARM1 contains an item with a value less than 200. If it

does, the SQL procedure inserts the XML value into column C1 in table T1.
3. Concatenates the contents of PARM1 and var1, creates an element named ORDER that contains the

concatenated content, returns the ORDER element as a document node, and assigns that document
node to XML variable var1.

4. Inserts the value that is in XML variable var1 into column C1 in table T1.

72 Db2 11 for z/OS: pureXML Guide

Example: non-inline SQL function The following code demonstrates the declaration, use, and
assignment of XML parameters and variables in a non-inline SQL scalar function. This function takes two
parameters as input: an XML document that contains book order information, with prices in U.S. dollars
or Canadian, and the monetary exchange rate. The function returns an XML document that contains the
prices in Canadian dollars.

CREATE FUNCTION CANOrder(BOOKORDER XML, USTOCANRATE double)
 RETURNS XML
 DETERMINISTIC
 NO EXTERNAL ACTION
 CONTAINS SQL
 BEGIN ATOMIC
 DECLARE USPrice decimal(15,2);
 DECLARE CANPrice decimal(15,2);
 DECLARE OrderInCAN XML; 1
 SET USPrice = XMLCAST(XMLQUERY('/bookorder/USprice' PASSING BOOKORDER)
 AS decimal(15,2)); 2
 SET CANPrice = XMLCAST(XMLQUERY('/bookorder/CANprice' PASSING BOOKORDER)
 AS decimal(15,2)); 3
 IF CANPrice is NULL or CANPrice <=0 THEN
 IF USPrice >0 THEN
 SET CANPrice = USPrice * USTOCANRATE;
 ELSE
 SET CANPrice = 0;
 END IF;
 SET OrderInCAN = 4
 XMLDOCUMENT(
 XMLELEMENT(NAME "bookorder",
 XMLQUERY('/bookorder/bookname' PASSING BOOKORDER),
 XMLELEMENT(NAME "CANprice", CANPrice))
);
 RETURN OrderInCAN;
 END#

The SQL function performs the following operations:

1. Declares an XML variable named OrderInCAN, which will hold the order with prices in Canadian dollars
that is returned to the caller.

2. Retrieves the U.S. price from the input document, which is in the BOOKORDER parameter.
3. Looks for a Canadian price in the input document. If the document contains no Canadian prices, the

XMLCAST function on the XMLQUERY function returns NULL.
4. Builds the output document, whose top-level element is bookorder, by concatenating the bookname

element from the original order with a CANprice element, which contains the calculated price in
Canadian dollars.

Suppose that an input document looks like this:

<bookorder>
 <bookname>TINTIN</bookname>
 <USprice>100.00</USprice>
</bookorder>

If the exchange rate is 0.9808 Canadian dollars for one U.S. dollar, the output document looks like this:

<bookorder><bookname>TINTIN</bookname><CANprice>9.81</CANprice></bookorder>

Example: SQL table function: The following code demonstrates the declaration, use, and assignment of
XML parameters and variables in an SQL table function. This function takes three parameters as input: an
XML document that contains order information, a maximum price for the order, and the title of the book
that is ordered. The function returns a table that contains an XML column with receipts that are generated
from all of the input parameters, and a BIGINT column that contains the order IDs that are retrieved from
the input parameter that contains the order information document.

CREATE FUNCTION ORDERTABLE
 (ORDERDOC XML, PRICE decimal(15,2), BOOKTITLE varchar(50))
 RETURNS TABLE (RECEIPT XML, ORDERID BIGINT)
 LANGUAGE SQL
 SPECIFIC ORDERTABLE
 NOT DETERMINISTIC

Chapter 2. Working with XML data 73

 READS SQL DATA
 RETURN
 SELECT ORDER.RECEIPT, ORDER.ID
 FROM XMLTABLE(XMLNAMESPACES(DEFAULT 'http://posample.org'),
 '/orderdoc/bookorder[USprice < $A and bookname = $B]'
 PASSING ORDERDOC, PRICE as A, BOOKTITLE as B
 COLUMNS
 ID BIGINT PATH '@OrderID',
 RECEIPT XML PATH '.')
 AS ORDER;

The SQL table function uses the XMLTABLE function to generate the result table for the table that is
returned by the function. The XMLTABLE function generates a row for each ORDERDOC input document
in which the title matches the book title in the BOOKTITLE input parameter, and the price is less than
the value in the PRICE input parameter. The columns of the returned table are the Receipt node of the
ORDERDOC input document, and the OrderID element from the ORDERDOC input document.

Suppose that the input parameters have these values:

PRICE: 200, BOOKTITLE: TINTIN, ORDERDOC:

<orderdoc xmlns="http://posample.org" OrderID="5001">
 <name>Jim Noodle</name>
 <addr country="Canada">
 <street>25 EastCreek</street>
 <city>Markham</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N9C-3T6</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 <bookorder>
 <bookname>TINTIN</bookname>
 <USprice>100.00</USprice>
 </bookorder>
</orderdoc>

The returned table looks like this:

ID RECEIPT

5001 <orderdoc xmlns="http://posample.org" OrderID="5001"> <name>Jim Noodle</name>
<addr country="Canada"> <street>25 EastCreek</street> <city>Markham</city>
<prov-state>Ontario</prov-state> <pcode-zip>N9C-3T6</pcode-zip> </addr> <phone
type="work">905-555-7258</phone> <bookorder> <bookname>TINTIN</bookname>
<USprice>100.00</USprice> </bookorder> </orderdoc>

Requests for data in XML columns by earlier Db2 clients
If you retrieve data from an XML column to a client that is at an earlier release than DB2 9, your database
client cannot handle XML data.

During DRDA processing, when the database server recognizes a client that cannot support XML data, by
default, the Db2 database server describes XML data values as BLOB values and sends the data to the
client as BLOB data. The BLOB data is the textual XML representation of the XML data, with a complete
XML declaration.

If you want to receive the data as a CLOB or DBCLOB data type, instead of a BLOB data type, you can
invoke the XMLSERIALIZE function on the column data to instruct the Db2 database server to convert the
data to the specified data type before it sends the data to the client.

When you do not invoke XMLSERIALIZE to retrieve data from a database server to a client at an earlier
release level, the column from which you retrieve the data does not behave exactly like a BLOB column.
For example, although you can use the LIKE predicate on a BLOB column, you cannot use the LIKE
predicate on an XML column that returns BLOB data.

Related concepts
XML serialization

74 Db2 11 for z/OS: pureXML Guide

XML serialization is the process of converting XML data from its internal representation in a Db2 table to
the textual XML format that it has in an application.

Functions for constructing XML values
Several SQL/XML publishing functions can be used together to publish relational data in XML format.

Those functions are:

XMLAGG aggregate function
Returns an XML sequence containing an item for each non-null value in a set of XML values.

XMLATTRIBUTES scalar function
Constructs XML attributes from the arguments. This function can only be used as an argument of the
XMLELEMENT function.

XMLCOMMENT scalar function
Returns an XML value with a single comment node with the input argument as the content.

XMLCONCAT scalar function
Returns a sequence containing the concatenation of a variable number of XML input arguments.

XMLDOCUMENT scalar function
Returns an XML value with a single document node with zero or more children nodes.

This function creates a document node, which by definition, every XML document must have. A
document node is not visible in the textual representation of XML, however, every document that is to
be stored in a Db2 table must contain a document node.

It is not necessary to call XMLDOCUMENT when you insert an XML value into an XML column, or
update an XML column with an XML value. Db2 implicitly adds the document node for you. For
example, the following INSERT statement explicitly calls XMLDOCUMENT to insert value COL2:

INSERT INTO T1 (INT1,XML1)
SELECT X.COL1, XMLDOCUMENT(X.COL2)
FROM XMLTABLE('/A/B' PASSING CAST (? AS XML)
 COLUMNS COL1 INTEGER PATH '@id',
 COL2 XML PATH '.') X;

However, you can omit XMLDOCUMENT, and Db2 implicitly adds the document node for COL2:

INSERT INTO T1 (INT1,XML1)
SELECT X.COL1, X.COL2
FROM XMLTABLE('/A/B' PASSING CAST (? AS XML)
 COLUMNS COL1 INTEGER PATH '@id',
 COL2 XML PATH '.') X;

XMLELEMENT scalar function
Returns an XML value that is an XML element node.

XMLFOREST scalar function
Returns an XML value that is a sequence of XML element nodes.

XMLNAMESPACES declaration
Constructs namespace declarations from the arguments. This declaration can only be used as an
argument of the XMLELEMENT or XMLFOREST functions.

XMLPI scalar function
Returns an XML value with a single processing instruction node.

XMLTEXT scalar function
Returns an XML value with a single text node having the input argument as the content.

You can combine these functions to construct XML values that contain different types of nodes. You need
to specify the functions in the order in which you want the corresponding elements to appear.

Chapter 2. Working with XML data 75

Example
Suppose that you want to construct the following document, which has constant values:

<elem1 xmlns="http://posample.org" id="111">
 <!-- example document -->
 <child1>abc</child1>
 <child2>def</child2>
</elem1>

The document consists of:

• Three element nodes (elem1, child1, and child2)
• A namespace declaration
• An id attribute on elem1
• A comment node

To construct this document, you need to invoke publishing functions in the following order:

1. Create an element node named elem1, using XMLELEMENT.
2. Add a default namespace declaration to the XMLELEMENT function call for elem1, using

XMLNAMESPACES.
3. Create an attribute named id using XMLATTRIBUTES, placing it after the XMLNAMESPACES

declaration.
4. Create a comment node using XMLCOMMENT, within the XMLELEMENT function call for elem1.
5. Create a sequence of element nodes that are named child1 and child2, using the XMLFOREST

function, within the XMLELEMENT function call for elem1.

The following SELECT statement constructs the document:

SELECT XMLELEMENT (NAME "elem1",
 XMLNAMESPACES (DEFAULT 'http://posample.org'),
 XMLATTRIBUTES ('111' AS "id"),
 XMLCOMMENT (' example document '),
 XMLFOREST('abc' as "child1",
 'def' as "child2"))
 FROM SYSIBM.SYSDUMMY1

Example
Suppose that you want to construct an XML document from name elements in the Description column of
the sample Product table.

The documents in the Description column look similar to this one:

<product xmlns="http://posample.org" pid="100-100-01">
 <description>
 <name>Snow Shovel, Basic 22"</name>
 <details>Basic Snow Shovel, 22" wide, straight handle with D-Grip</details>
 <price>9.99</price>
 <weight>1 kg</weight>
 </description>
</product>

You want the constructed document to look like this:

<allProducts xmlns="http:⁄⁄posample.org">
 <item>Snow Shovel, Basic 22"<⁄item>
 <item>Snow Shovel, Deluxe 24"<⁄item>
 <item>Snow Shovel, Super Deluxe 26"<⁄item>
 <item>Ice Scraper, Windshield 4" Wide<⁄item>
<⁄allProducts>

The document consists of:

• Five element nodes (allProducts, and four item elements)

76 Db2 11 for z/OS: pureXML Guide

• A namespace declaration

To construct this document, you need to invoke publishing functions in the following order:

1. Create an element node named allProducts, using XMLELEMENT.
2. Add a default namespace declaration to the XMLELEMENT function call for allProducts, using

XMLNAMESPACES.
3. Create a sequence of element item nodes, using the XMLELEMENT function within the XMLAGG

function call.

The following SELECT statement constructs the document:

SELECT XMLELEMENT (NAME "allProducts",
 XMLNAMESPACES (DEFAULT 'http://posample.org'),
 XMLAGG(XMLELEMENT (NAME "item", p.name)))
FROM Product p

Example
Suppose that you want to construct an XML document from name elements in documents in the
Description column of the sample Product table, and Quantity column values of the sample Inventory
table. The join column for the Product and Quantity tables is the Pid column.

You want the generated XML document to look like this:

<saleProducts xmlns="http:⁄⁄posample.org">
 <prod id="100-100-01">
 <name>Snow Shovel 22"<⁄name>
 <numInStock>5<⁄numInStock>
 <⁄prod>
 <prod id="100-101-01">
 <name>Snow Shovel 24"<⁄name>
 <numInStock>25<⁄numInStock>
 <⁄prod>
 <prod id="100-103-01">
 <name>Deluxe Snow Shovel 26"<⁄name>
 <numInStock>55<⁄numInStock>
 <⁄prod>
 <prod id="100-201-01">
 <name>Ice Scraper 4"<⁄name>
 <numInStock>99<⁄numInStock>
 <⁄prod>
<⁄saleProducts>

The document consists of:

• Thirteen element nodes (saleProducts, and four prod elements, each of which contains a name
element and a numInStock element)

• a namespace declaration

To construct this document, you need to invoke publishing functions in the following order:

1. Create an element node named saleProducts, using XMLELEMENT.
2. Add a default namespace declaration to the XMLELEMENT function call for saleProducts, using

XMLNAMESPACES.
3. Create a sequence of element prod nodes, using the following function invocations within the

XMLAGG function invocation to construct the prod nodes:

a. XMLELEMENT, to create prod node
b. XMLATTRIBUTES, to add an id attribute to each prod element
c. XMLFOREST, to construct the name and numInStock elements

The following SELECT statement constructs the document:

SELECT XMLELEMENT (NAME "saleProducts",
 XMLNAMESPACES (DEFAULT 'http://posample.org'),
 XMLAGG (XMLELEMENT (NAME "prod",

Chapter 2. Working with XML data 77

 XMLATTRIBUTES (p.Pid AS "id"),
 XMLFOREST (p.name as "name",
 i.quantity as "numInStock"))))
FROM PRODUCT p, INVENTORY i
WHERE p.Pid = i.Pid

Example
When you construct an XML value using XMLELEMENT or XMLFOREST, you might encounter NULL values
in the source tables. You can use the EMPTY ON NULL and NULL ON NULL options of XMLELEMENT
and XMLFOREST to specify whether to generate an empty element or no element when the functions
encounter a NULL value. The default NULL handling for XMLELEMENT is EMPTY ON NULL. The default
NULL handling for XMLFOREST is NULL ON NULL.

Suppose that the LOCATION column of the INVENTORY table contains a NULL value in one row. You want
to construct elements from the LOCATION column that contain an empty sequence if the LOCATION value
is NULL. The following SELECT statement does that:

SELECT XMLELEMENT (NAME "newElem",
 XMLATTRIBUTES (PID AS "prodID"),
 XMLFOREST (QUANTITY as "quantity",
 LOCATION as "loc" OPTION EMPTY ON NULL))
FROM INVENTORY

Related reference
XMLAGG (Db2 SQL)
XMLATTRIBUTES (Db2 SQL)
XMLCOMMENT (Db2 SQL)
XMLCONCAT (Db2 SQL)
XMLDOCUMENT (Db2 SQL)
XMLELEMENT (Db2 SQL)
XMLFOREST (Db2 SQL)
XMLNAMESPACES (Db2 SQL)
XMLPI (Db2 SQL)
XMLTEXT (Db2 SQL)

Special character handling in SQL/XML publishing functions
The SQL/XML publishing functions make substitutions for some special characters when SQL values and
identifiers are converted to XML values.

Special character handling for SQL values
Certain characters are considered special characters in XML documents. Those characters must appear in
their escaped format, using their entity representation. Those special characters are:

Table 18. Special characters and their entity representations

Special character Entity representation

< <

> >

& &

" " (in attribute values only)

When you publish SQL values as XML values using the SQL/XML publishing functions, the functions
replace those special characters with their predefined entities.

78 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlagg.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlattributes.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlcomment.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlconcat.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmldocument.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlelement.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlforest.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlnamespaces.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlpi.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmltext.html

Special character handling for SQL identifiers
When you construct XML values from SQL values, you might need to map an SQL identifier to an XML
qualified name, or QName. The set of characters that are allowed in delimited SQL identifiers differs,
however, from those that are permitted in a QName. This difference means that some characters that are
valid for SQL identifiers are not valid in QNames.

For example, consider the delimited SQL identifier "phone@work". Because the @ character is not a valid
character in a QName, the character is escaped, and the QName becomes phone_x0040_work.

This default escape behavior applies only to column names. For SQL identifiers that are provided as the
element name in XMLELEMENT, or as alias names in the AS clause of XMLFOREST and XMLATTRIBUTES,
there are no escape defaults. You must provide valid QNames in these cases.

Related concepts
Functions for constructing XML values
Several SQL/XML publishing functions can be used together to publish relational data in XML format.

XML serialization
XML serialization is the process of converting XML data from its internal representation in a Db2 table to
the textual XML format that it has in an application.

You can invoke the XMLSERIALIZE function, to request that the Db2 database server perform XML
serialization before it sends the XML data to the client application. This process is called explicit
serialization. Alternatively, you can omit the XMLSERIALIZE call, and retrieve data from an XML column
directly into application variables. The Db2 database server serializes the XML data during retrieval. This
process is called implicit serialization.

With implicit serialization, the data has the XML type when it is sent to the client, if the client
supports the XML data type. For Db2 ODBC and embedded SQL applications, the Db2 database
server adds an XML declaration, with the appropriate encoding specification, to the data. For Java
applications, the Db2 database server does not add an XML declaration, unless you use the deprecated
DB2Xml.getDB2Xmlxxx methods to retrieve the data.

Implicit serialization is the preferred method in most cases. Sending XML data to the client allows the Db2
client to handle the XML data properly. Explicit serialization requires additional handling by the client.

You can retrieve XML data in the binary XML format (Extensible Dynamic Binary XML Db2 Client/Server
Binary XML Format), rather than as textual XML data, to avoid serialization. Retrieval of data in the binary
XML format is supported only in JDBC, SQLJ, or ODBC applications, or by the UNLOAD utility.

After an explicit XMLSERIALIZE invocation, the data has a non-XML data type in the database server, and
is sent to the client as that data type.

XMLSERIALIZE lets you specify:

• The SQL data type to which the data is converted when it is serialized

The data type is a CLOB, BLOB, DBCLOB data type.
• Whether the output data should include the following explicit XML declaration (EXCLUDING

XMLDECLARATION or INCLUDING XMLDECLARATION):

<?xml version="1.0" encoding="UTF-8"?>

The output from XMLSERIALIZE is Unicode UTF-8-encoded data.

Be sure that you understand the implications of requesting an explicit encoding specification when you
execute XMLSERIALIZE. If you retrieve the textual XML data into a non-binary data type, the data is
converted to the application encoding, but the encoding specification is not modified. Therefore, the
encoding of the data might not agree with the encoding specification. This situation results in XML data
that cannot be parsed by application processes that rely on the encoding name.

Chapter 2. Working with XML data 79

In general, implicit serialization is preferable. However, under the following circumstances, it is better to
do an explicit XMLSERIALIZE:

• When XML documents are very large

Because there are no XML locators, if the XML documents are very large, you can use XMLSERIALIZE to
convert the data to a LOB type so that you can use LOB locators.

• When the client does not support XML data

If the client is an earlier version that does not support the XML data type, and you use implicit XML
serialization, the Db2 database server converts the data to the BLOB data type. If you want the
retrieved data to be some other data type, you can dynamically execute an SQL statement that invokes
XMLSERIALIZE to specify CLOB or DBCLOB output.

• When you want to pass XML data to a stored procedure or user-defined function

Db2 for z/OS stored procedures and user-defined functions do not support parameters with the XML
data type. Therefore, if you want to pass data from an XML column to a routine, you need to invoke
XMLSERIALIZE on the data to convert it to a BLOB, CLOB, or DBCLOB type.

The best data type to which to convert XML data is the BLOB data type, because retrieval of binary data
results in fewer encoding issues.

Example: XML column Info in sample table Customer contains a document that contains the hierarchical
equivalent of the following data:

<customerinfo xml:space="default" xmlns="http://posample.org" Cid='1000'>
 <name>Kathy Smith</name>
 <addr country='Canada'>
 <street>5 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type='work'>416-555-1358</phone>
</customerinfo>

Invoke XMLSERIALIZE to serialize the data and convert it to a BLOB type before retrieving it into a host
variable.

SELECT XMLSERIALIZE(Info as BLOB(1M)) from Customer
 WHERE CID='1000'

Example: In a C program, retrieve the customerinfo document for customer ID 1000 into an XML as BLOB
host variable. Doing this results in implicit XML serialization. The retrieved data is in the UTF-8 encoding
scheme, and it contains an XML declaration.

EXEC SQL BEGIN DECLARE SECTION;
 SQL TYPE IS XML AS BLOB (1M) xmlCustInfo;
EXEC SQL END DECLARE SECTION;
…
EXEC SQL SELECT INFO INTO :xmlCustInfo
 FROM Customer
 WHERE Cid=1000;

Example: This JDBC program avoids XML serialization by retrieving the data in the binary data format.
The program sets the DataSource property xmlFormat to indicate that the data should be retrieved in
the binary XML format. Then the program retrieves the customerinfo document for customer ID 1000
into an SQLXML object. Next, the program retrieves the data from the SQLXML object into a DOMSource
object, so that the retrieved data is in a non-textual representation. This technique requires JDBC 4.0 or
later.

import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC
 // and SQLJ implementation of JDBC
…
com.ibm.db2.jcc.DB2SimpleDataSource db2ds =
 new com.ibm.db2.jcc.DB2SimpleDataSource();
 // Create the DataSource object

80 Db2 11 for z/OS: pureXML Guide

db2ds.setDriverType(4); // Set the driver type
db2ds.setDatabaseName("san_jose"); // Set the location
db2ds.setUser("db2adm"); // Set the user
db2ds.setPassword("db2adm"); // Set the password
db2ds.setServerName("mvs1.sj.ibm.com");
 // Set the server name
db2ds.setPortNumber(5021); // Set the port number
db2ds.setXMLFormat(
 com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_BINARY);
 // Set XML format to binary
…
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT INFO FROM Customer WHERE Cid='1000'");
SQLXML sqlxml = rs.getSQLXML(1);
DOMSource domSource = sqlxml.getSource(DOMSource.class);
 // Get a DOMSource object from
 // the SQLXML object, to avoid
 // XML serialization
Document document = (Document) domSource.getNode();

Related concepts
Retrieving XML data
You can retrieve entire XML documents from XML columns by using an SQL SELECT statement.
Alternatively, you can use SQL with XML extensions (SQL/XML) to retrieve portions of documents.

Differences in an XML document after storage and retrieval
When you store an XML document in a table and then retrieve that document, the retrieved document
might not be the same as the original document.

This behavior is defined by the XML and SQL/XML standard.

Some of the changes to the document occur when the document is stored. Those changes are:

• If you execute DSN_XMLVALIDATE, the database server strips ignorable whitespace from the input
document.

• If you do not request XML schema validation, the database server:

– Strips boundary whitespace, if you do not request preservation
– Replaces all carriage return and line feed pairs (U+000D and U+000A), or carriage returns (U+000D),

within the document with line feeds (U+000A)
– Performs attribute-value normalization, as specified in the XML 1.0 specification

This process causes line feed (U+000A) characters in attributes to be replaced with space characters
(U+0020).

Additional changes occur when you retrieve the data from an XML column. Those changes are:

• If the data has an XML declaration before it is sent to the database server, the XML declaration is not
preserved.

With implicit serialization, for Db2 ODBC and embedded SQL applications, the Db2 database server
adds an XML declaration, with the appropriate encoding specification, to the data. For Java and .NET
applications, the Db2 database server does not add an XML declaration, but if you retrieve the data into
a DB2Xml object and use certain methods to retrieve the data from that object, the IBM Data Server
Driver for JDBC and SQLJ adds an XML declaration.

If you execute the XMLSERIALIZE function, the Db2 database server adds an XML declaration with an
encoding specification for UTF-8 encoding, if you specify the INCLUDING XMLDECLARATION option.

• Within the content of a document or in attribute values, certain characters are replaced with entity
references for their predefined XML entities. Those characters and their predefined entities are:

Character Unicode value Entity reference

AMPERSAND U+0026 &

LESS-THAN SIGN U+003C <

Chapter 2. Working with XML data 81

Character Unicode value Entity reference

GREATER-THAN SIGN U+003E >

• Within attribute values or text values, certain characters are replaced with their character references for
their numeric representations. Those characters and their character references are:

Character Unicode value Character reference

CHARACTER TABULATION U+0009 	

LINE FEED U+000A

CARRIAGE RETURN U+000D 

NEXT LINE U+0085 …

LINE SEPARATOR U+2028  

• Within attribute values, the QUOTATION MARK (U+0022) character is replaced with its predefined XML
entity reference ".

• If the input document has a DTD declaration, the declaration is not preserved, and no markup based on
the DTD is generated.

• If the input document contains CDATA sections, those sections are not preserved in the output.

Related concepts
XML serialization
XML serialization is the process of converting XML data from its internal representation in a Db2 table to
the textual XML format that it has in an application.
XML schema validation
XML schema validation is the process of determining whether the structure, content, and data types of an
XML document are valid according to an XML schema.

Transforming an XML document with XSLTRANSFORM
The standard way to transform XML data into other formats is by Extensible Stylesheet Language
Transformations (XSLT). You can use the XSLTRANSFORM function to convert XML documents into HTML,
plain text, or different XML schemas.

XSLT uses style sheets to convert XML into other data formats. You can convert part or all of an XML
document and select or rearrange the data with the XPath query language and the built-in functions of
XSLT. XSLT is commonly used to convert XML to HTML, but can also be used to transform XML documents
that comply with one XML schema into documents that comply with another schema. XSLT can also be
used to convert XML data into formats such as comma-delimited text or formatting languages.

XSLT style sheets are written in Extensible Stylesheet Language (XSL), an XML schema. For information on
how to write XSL see the W3C recommendation for XSL Transformations.

The XSLTRANSFORM function accepts an XML document from an expression, an XSL style sheet, and
parameter values to the XSL style sheet as input. The XML document is transformed with the instructions
in the XSL style sheet.

The XSLTRANSFORM user-defined function is created during installation or migration. The
XSLTRANSFORM function requires Java. Setup is similar to the WLM environment for XML schema
repository Java stored procedures.

Related tasks
Additional steps for enabling the function for XSLTRANSFORM routines support (Db2 Installation and
Migration)
Defining the WLM environment and JCL startup procedure for the Java language XML schema repository
stored procedure

82 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_enablexsltroutines.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/inst/src/tpc/db2z_enablexsltroutines.html

The XML schema validation stored procedure, XSR_COMPLETE, which is written in Java, can share a WLM
environment with other Java routines. You need a JCL procedure that is tailored for starting that WLM
environment.
Related reference
XSLTRANSFORM (Db2 SQL)
Related information
XSL Transformations (XSLT)

Chapter 2. Working with XML data 83

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xsltransform.html
http://www.w3.org/TR/xslt/

84 Db2 11 for z/OS: pureXML Guide

Chapter 3. XML data indexing
An XML index can be used to improve the efficiency of queries on XML documents that are stored in an
XML column.

In contrast to traditional relational indexes, where index keys are composed of one or more table columns
that you specify, an XML index uses a particular XML pattern expression to index paths and values in XML
documents stored within a single column. The data type of that column must be XML.

Instead of providing access to the beginning of a document, index entries in an XML index provide
access to nodes within the document by creating index keys based on XML pattern expressions. Because
multiple parts of a XML document can satisfy an XML pattern, Db2 might generate multiple index keys
when it inserts values for a single document into the index.

You create an XML index using the CREATE INDEX statement, and drop an XML index using the DROP
INDEX statement. The GENERATE KEY USING XMLPATTERN clause you include with the CREATE INDEX
statement specifies what you want to index.

Some of the keywords used with the CREATE INDEX statement for indexes on non-XML columns do not
apply to indexes over XML data.

Example: You want to create an XML index in the INFO column of the sample CUSTOMER table. The
following document shows the format of documents in the INFO column.

<customerinfo xmlns="http://posample.org" Cid="1000">
<name>Kathy Smith</name>
<addr country="Canada">
<street>5 Rosewood</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M6W-1E6</pcode-zip>
</addr>
<phone type="work">416-555-1358</phone>
</customerinfo>

Users of the CUSTOMER table often retrieve customer information using the customer ID. You might use
an index like this one to make that retrieval more efficient:

CREATE UNIQUE INDEX CUST_CID_XMLIDX ON CUSTOMER(INFO) 1
 GENERATE KEY USING XMLPATTERN 2
'declare default element namespace "http://posample.org";
/customerinfo/@Cid'
 AS SQL VARCHAR(4) 3

Figure 4. Example of XML index creation

Notes to Figure 4 on page 85:

1 The XML index is defined on the INFO column of the CUSTOMER table. INFO must be of the
XML data type.

2 The GENERATE KEY USING XMLPATTERN clause provides information about what you want
to index. This clause is called an XML index specification. The XML index specification
contains an XML pattern clause. The XML pattern clause in this example indicates that you
want to index the values of the Cid attribute of each customerinfo element, and that the
namespace for all unqualified elements is http://posample.org. The namespace declaration
is necessary because the XML documents have a namespace of http://posample.org.

3 AS SQL VARCHAR(4) indicates that indexed values are stored as VARCHAR(4) values.

© Copyright IBM Corp. 2007, 2021 85

Pattern expressions
For an XML document in an XML column, Db2 indexes only the parts that satisfy an XML pattern
expression.

To index on an XML pattern, you provide an index specification clause in the CREATE INDEX statement.
The index specification clause begins with GENERATE KEY USING XMLPATTERN, followed by an XML
pattern and a data type for the XML index.

Only one index specification clause is allowed in a CREATE INDEX statement. However, you can create
multiple XML indexes on an XML column.

To identify those parts of the document that you want to index, you use an XML pattern to specify a set of
nodes in the XML document. This pattern expression is similar to an XPath expression, but it differs in that
only a subset of the XPath language is supported.

The following examples show various pattern expressions that index data in the Info column of the
sample Customer table. Statements 1 and 2 are logically equivalent. Statement 2 uses the
unabbreviated syntax. Statements 3 and 4 are logically equivalent. Statement 4 uses the
unabbreviated syntax.

CREATE INDEX CSTPHIX1 on Customer(Info) 1
 GENERATE KEY USING XMLPATTERN '/customerinfo/phone/@type' AS SQL VARCHAR(12)

CREATE INDEX CSTPHIX2 on Customer(Info) 2
 GENERATE KEY USING XMLPATTERN '/child::customerinfo/child::phone/attribute::type'
 AS SQL VARCHAR(12)

CREATE INDEX CSTPHIX3 on Customer(Info) 3
 GENERATE KEY USING XMLPATTERN '//@type' AS SQL DECFLOAT

CREATE INDEX CSTPHIX4 on Customer(Info) 4
 GENERATE KEY USING XMLPATTERN '/descendant-or-self::node()/attribute::type'
 AS SQL DECFLOAT

You can tailor your pattern expressions to be more specific or more general. For example, suppose that
some of the documents in the Info column of the Customer table have an Cid attribute on the name
element, as well as on the customerinfo element. That is, the XML documents in the Info column can
have either of these two paths: '/customerinfo/@Cid' and '/customerinfo/name/@Cid'. You can write an
XML pattern that includes either of these paths, or both paths.

For example, if you want to index on the customer ID for a specific customer, you can create an index
with the XML pattern '/customerinfo/name/@Cid'. Queries with predicates of the form '/customerinfo/
name[@Cid="1000"]' can use this index.

Alternatively, you can create an XML pattern that indexes the customer ID attribute whether it appears in
the customerinfo element or the name element. The pattern expression '//@Cid' does that.

XML pattern expressions can contain the fn:exists or fn:upper-case functions. If a pattern expression
contains fn:exists, the data type that is associated with the pattern expression must be VARCHAR(1).

Related concepts
Data types associated with pattern expressions
Every XML pattern expression that you specify in a CREATE INDEX statement must be associated with a
data type. The data type must be VARCHAR, DECFLOAT, DATE, or TIMESTAMP.
Related reference
CREATE INDEX (Db2 SQL)

86 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Namespace declarations in XML index definitions
In the XMLPATTERN clause of the CREATE INDEX statement, you can specify an optional namespace
declaration that maps a URI to a namespace prefix. Then you can use the namespace prefix when you
refer to element and attribute names in the XML pattern expression.

Example: Suppose that you want to create an index for documents that look like this:

<customerinfo xmlns="http://posample.org" Cid="1000">
<name>Kathy Smith</name>
<addr country="Canada">
<street>5 Rosewood</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M6W-1E6</pcode-zip>
</addr>
<phone type="work">416-555-1358</phone>
</customerinfo>

In a CREATE INDEX statement, use a namespace declaration to map the namespace URI http://
posample.org to the character m, and qualify all elements with that namespace prefix:

CREATE INDEX CUST_PHONE_XMLIDX on CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN
 'declare namespace m="http://posample.org";
 /m:customerinfo/m:phone/@type' AS SQL VARCHAR(12)

You can include multiple namespace declarations in the same XMLPATTERN expression, but the
namespace prefix must be unique within the list of namespace declarations. In addition, you can declare
a default namespace for elements that do not have a prefix. If you do not explicitly specify a namespace
or namespace prefix for an element, Db2 uses the default namespace. You can declare only one default
namespace. If you do not specify a default namespace, the namespace is no namespace.

Default namespace declarations do not apply to attributes.

Example: Write a CREATE INDEX statement to use a default namespace of http://posample.org for all
elements:

CREATE INDEX CUST_PHONE_XMLIDX on CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN
 'declare default element namespace "http://posample.org";
 /customerinfo/phone/@type' AS SQL VARCHAR(12)

The namespace for the @type attribute is no namespace. If you want to qualify @type, you need to do
that explicitly, as shown below.

Example: Suppose that column INFO in table CUSTOMER contains documents of this form:

<customerinfo xmlns:n="http://posample.org"
xmlns="http://posample.org" Cid="1010">
<name>Christine Haas</name>
<addr country="United States">
<street>1000 Oakwood</street>
<city>Toledo</city>
<prov-state>Ohio</prov-state>
<pcode-zip>43537</pcode-zip>
</addr>
<phone n:type="work">567-555-1469</phone>
</customerinfo>

You need an index that looks like this to match those documents:

CREATE INDEX CUST_PHONE_XMLIDX on CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN
 'declare default element namespace "http://posample.org";
 declare namespace m="http://posample.org";
 /customerinfo/phone/@m:type' AS SQL VARCHAR(12)

Chapter 3. XML data indexing 87

The namespace prefix that you use to create an the index does not need to match the namespace prefix
that you use in XML documents. However, the fully-expanded QNames must match.

Related concepts
XML namespaces and qualified names in XQuery
XQuery uses XML namespaces to prevent naming collisions. An XML namespace is a collection of names
that is identified by a namespace URI. Namespaces provide a way of qualifying names that are used for
elements, attributes, data types, and functions in XQuery.
Related reference
CREATE INDEX (Db2 SQL)

Data types associated with pattern expressions
Every XML pattern expression that you specify in a CREATE INDEX statement must be associated with a
data type. The data type must be VARCHAR, DECFLOAT, DATE, or TIMESTAMP.

If a pattern expression contains fn:exists, the data type that is associated with the pattern expression
must be VARCHAR(1).

You can interpret the result of pattern expression as multiple data types. For example, the value 123 has
a character representation, but it can also be interpreted as the number 123. You can create different
indexes on the same pattern expression with different data types, so that the data can be indexed,
regardless of its data type.

Example: Create indexes for the character or numeric representation of the Cid attribute in XML
documents in the Info column of the sample Customer table:

CREATE INDEX CUST_XMLIDX_CHAR on Customer(Info)
 GENERATE KEY USING XMLPATTERN '/customerinfo/@Cid' AS SQL VARCHAR(4)

CREATE INDEX CUST_XMLIDX_NUM on Customer(Info)
 GENERATE KEY USING XMLPATTERN '/customerinfo/@Cid' AS SQL DECFLOAT

Example: Create an index for the date representation of the shipDate element in XML documents in the
PORDER column of the PURCHASEORDER table.

CREATE INDEX PO_XMLIDX1 ON PURCHASEORDER (PORDER)
 GENERATE KEY USING XMLPATTERN '//items/shipDate'
 AS SQL DATE

Related concepts
Pattern expressions
For an XML document in an XML column, Db2 indexes only the parts that satisfy an XML pattern
expression.
Related reference
CREATE INDEX (Db2 SQL)

XML schemas and XML indexes
If you validate your XML documents against an XML schema, ensure that the data type specifications in
the XML schema match the data types that you use for your indexes.

Example: Suppose that an XML schema for documents in the Description column of the sample Product
table looks like this:

<?xml version="1.0"?>
<xs:schema targetNamespace="http://posample.org"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:element name="product">
 <xs:complexType>
 <xs:sequence>

88 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_createindex.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_createindex.html

 <xs:element name="description" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="details" type="xs:string" minOccurs="0" />
 <xs:element name="price" type="xs:decimal" minOccurs="0" />
 <xs:element name="weight" type="xs:string" minOccurs="0" />

 <xs:element name="batteries" nillable="true" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="included" type="xs:string" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="pid" type="xs:string" />
 </xs:complexType>
 </xs:element>
</xs:schema>

After looking at the queries you need to execute, you determine that you need indexes on name and
price. The XML schema provides guidance on what data type to pick for the index: the price element is
decimal, so you need to choose the DECFLOAT data type for the index on price. name has a string data
type, with a maximum length of 20 Unicode characters. You should choose the VARCHAR(80) type for the
index on name. The maximum length of 80 bytes ensures that the index can accommodate the largest
possible name value, which is a 20-character name in which each character has the maximum length of
four bytes. Your indexes might look like this:

CREATE INDEX priceindex on Product(Description)
 GENERATE KEY USING XMLPATTERN '/product/description/price' AS DECFLOAT
CREATE INDEX colorindex on company(productdocs)
 GENERATE KEY USING XMLPATTERN '/product/description/name' AS SQL VARCHAR(80)

Related concepts
Pattern expressions
For an XML document in an XML column, Db2 indexes only the parts that satisfy an XML pattern
expression.
Related reference
CREATE INDEX (Db2 SQL)

The UNIQUE keyword in an XML index definition
The UNIQUE keyword in XML index definitions has a slightly different meaning than it does for relational
index definitions.

For relational indexes, the UNIQUE keyword in the CREATE INDEX statement enforces uniqueness across
all rows in a table. For indexes over XML data, the UNIQUE keyword enforces uniqueness across all
documents in an XML column.

For an XML index, Db2 enforces uniqueness for:

• The data type of the index
• The XML path to a node
• The value of the node after the XML value has been cast to the SQL data type that is specified for the

index

Chapter 3. XML data indexing 89

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Because rounding can occur during conversion of an index key value to the specified data type for the
index, multiple values that appear to be unique in the XML document might result in duplicate key errors.

Related reference
CREATE INDEX (Db2 SQL)

Access methods with XML indexes
Several data access methods use XML indexes.

When you create a table with XML columns, Db2 implicitly creates a document ID index (DOCID index) on
the base table and a node ID index (NODEID index) on each associated XML table. The document ID index
associates base table rows with rows to which XML indexes point. The data for a document in an XML
table is stored in multiple records. A node ID index links the records for an XML document.

When you explicitly create an index on an XML column, the XML index contains composite key values that
map XML values to DOCID and NODEID pairs. The XML index indexes the nodes in an XML document that
match an XPath expression in the index definition. Db2 compares an XPath expression in a predicate to
the XPath expression in an XML index to determine index key entries that contain matched key values.
Db2 uses the DOCIDs from the DOCID and NODEID pairs of the identified index key entries to locate the
corresponding base table rows efficiently.

The following data access methods are used for predicates that have eligible XML indexes.

Access method name

ACCESSTYPE
value in
PLAN_TABLE Purpose

DOCID list access DX Retrieval of base table rows that correspond to
XML table rows. Db2 searches an XML index,
retrieves all the qualified DOCIDs, and creates a
DOCID list. Db2 uses the DOCID index to convert
the DOCID list to a RID list that it uses to fetch
base table rows.

DOCID ANDing DI Retrieval of rows for two predicates that include
XPath expressions, when the predicates are
connected by AND. Db2 creates a DOCID list
for each predicate and forms the intersection of
them.

DOCID ORing DU Retrieval of rows for two predicates that include
XPath expressions, when the predicates are
connected by OR. Db2 creates a DOCID list for
each predicate and forms the union of them.

A matching predicate is not always an exact match with the XPath expression in an XML index. The
following information describes some of the most common types of matching and restrictions on
matching.
Truly exact match

An exact match, meaning that both XPath expressions are identical. This method is used
only for the XML index with the SQL data type VARCHAR. For example: XPath expression in
XMLEXISTS: /a/b/c, and XPath expression in the XML index: /a/b/c.

Exact match but the ending part of the XPath expression in XMLEXISTS is in a predicate
Used only when the XPath predicate is a general comparison with operator =, <, <=, >, or >=. The
data type of the operands in the predicate must match to the index data type. For example, XPath
expression in XMLEXISTS: /a[b/@c > 123], and XPath expression in the XML index: /a/b/@c.

90 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Partial exact match with residual steps
Used to evaluate the XPath expression which has more steps than the first two methods. These extra
steps in the XPath expression of XMLEXISTS are called 'residual steps'. For example: XPath expression
in XMLEXISTS: /a/b[c > “xyz”]//d[e=8], and XPath expression in the XML index: /a/b/c.

Partial match for index filtering
The methods above have segments in the XPath expressions of XMLEXISTS that match “well” with
the XPath expression of an index. This method handles the cases where the XPath expression in
XMLEXISTS does not match so well with the XPath expression of an index. For example: XPath
expression in XMLEXISTS: /a[b/c = 5]/d, and XPath expression in the XML index: //c.

Partial exact match with ANDing and ORing on DOCID lists
The XPath expression might be decomposed into multiple XPath segments which are ANDed or
ORed together to produce a super set of the final result. The methods above apply to each of the
decomposed XPath segments to determine whether the XML index can be used to evaluate the XPath
segment. For example: XPath expression in XMLEXISTS: /a/b[c = “xyz” and d > “abc”],
and XPath expressions in the XML indexes: /a/b/c, and /a/b/d.

Partial match for filtering combined with ANDing and ORing on DOCID lists
Partial match for filtering can be combined with partial exact match with ANDing and ORing on DOCID
lists. For example: XPath expression in XMLEXISTS: /a/b[@c = 5 or d > “a”]/e, and XPath
expressions in the XML indexes: //@c, and /a/b/d.

Related concepts
Storage structure for XML data (Introduction to Db2 for z/OS)
XMLEXISTS predicate for querying XML data
The XMLEXISTS predicate can be used to restrict the set of rows that a query returns, based on the values
in XML columns.
Multiple index access (ACCESSTYPE='M', 'MX', 'MI', 'MU', 'DX', 'DI', or 'DU') (Db2 Performance)
Related reference
XMLEXISTS predicate (Db2 SQL)
PLAN_TABLE (Db2 Performance)

Example of DOCID ANDing access (ACCESSTYPE='DI')
Two XMLEXISTS predicates that are connected with AND might be eligible for DOCID ANDing access.

Both predicates must have an eligible XML index.

The following query retrieves all XML documents from the INFO column of the CUSTOMER table for a
customer whose zip code is 95141 and whose street name, when converted to uppercase, is BAILEY AVE.

SELECT INFO FROM CUSTOMER
 WHERE XMLEXISTS('$x/customerinfo/address[@zip=”95141”
 and fn:upper-case(street)="BAILEY AVE"]'
 PASSING CUSTOMER.INFO as "x")

The following index matches the first predicate.

CREATE INDEX CUST_ZIP_STR ON CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN '/customerinfo/address/@zip'
 AS VARCHAR(10)

The following index matches the second predicate.

CREATE INDEX CUST_STREET_UPPER ON CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN '/customerinfo/address/street/fn:upper-case(.)'
 AS VARCHAR(50)

Chapter 3. XML data indexing 91

https://www.ibm.com/docs/en/SSEPEK_11.0.0/intro/src/tpc/db2z_xmlstoragestruct-admin.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/perf/src/tpc/db2z_multipleindexaccess.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_xmlexistspredicate.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/usrtab/src/tpc/db2z_plantable.html

Db2 uses DOCID list access (DX) to get the DOCID lists for the individual predicates, and then uses
DOCID ANDing access (DI) to get the intersection of DOCID lists after an index scan of CUST_ZIP_STR and
CUST_STREET_UPPER.

An excerpt from the The PLAN_TABLE output for the query looks like this:

Table 19. Example of columns of PLAN_TABLE for DOCID ANDing access

PLAN
NO

ACCESS
TYPE

MATCH
COLS

ACCESS
NAME

MIXOP
SEQ

1 M 0 0

1 DX 1 CUST_ZIP_STR 1

1 DX 1 CUST_STREET_UPPER 2

1 DI 0 3

Related concepts
Multiple index access (ACCESSTYPE='M', 'MX', 'MI', 'MU', 'DX', 'DI', or 'DU') (Db2 Performance)
Related reference
PLAN_TABLE (Db2 Performance)
XMLEXISTS predicate (Db2 SQL)

Example of DOCID ORing access (ACCESSTYPE='DU')
Two XMLEXISTS predicates that are connected with OR might be eligible for DOCID ORing access.

Both predicates must have an eligible XML index.

The following query retrieves all XML documents from the INFO column of the CUSTOMER table for a
customer whose zip code is 95141 or whose street name, when converted to uppercase, is BAILEY AVE.

SELECT INFO FROM CUSTOMER
 WHERE XMLEXISTS('$x/customerinfo/address[@zip=”95141”
 or fn:upper-case(street) = "BAILEY AVE"]'
 PASSING CUSTOMER.INFO as "x")

The following index matches the first predicate.

CREATE INDEX CUST_ZIP_STR ON CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN '/customerinfo/address/@zip'
 AS VARCHAR(10)

The following index matches the second predicate.

CREATE INDEX CUST_STREET_UPPER ON CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN '/customerinfo/address/street/fn:upper-case(.)'
 AS VARCHAR(50)

Db2 uses DOCID list access (DX) to get the DOCID lists for the individual predicates, and then uses
DOCID ORing access (DI) to get the union of DOCID lists after an index scan of CUST_ZIP_STR and
CUST_STREET_UPPER.

An excerpt from the The PLAN_TABLE output for the query looks like this:

92 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/perf/src/tpc/db2z_multipleindexaccess.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/usrtab/src/tpc/db2z_plantable.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_xmlexistspredicate.html

Table 20. Example of columns of PLAN_TABLE for DOCID ORing access

PLAN
NO

ACCESS
TYPE

MATCH
COLS

ACCESS
NAME

MIXOP
SEQ

1 M 0 0

1 DX 1 CUST_ZIP_STR 1

1 DX 1 CUST_STREET_UPPER 2

1 DU 0 3

Related concepts
Multiple index access (ACCESSTYPE='M', 'MX', 'MI', 'MU', 'DX', 'DI', or 'DU') (Db2 Performance)
Related reference
PLAN_TABLE (Db2 Performance)
XMLEXISTS predicate (Db2 SQL)

Examples of index definitions and queries that use them
Examples demonstrate some common types of predicates that reference XML documents, and
compatible indexes for those predicates.
Related concepts
XMLEXISTS predicate for querying XML data
The XMLEXISTS predicate can be used to restrict the set of rows that a query returns, based on the values
in XML columns.
Related reference
CREATE INDEX (Db2 SQL)

Examples of XML index usage by equal predicates
Examples demonstrate the use of XML indexes by equal predicates.

Example: The following query includes an equal predicate on a string type. It retrieves all documents
from the INFO column of the CUSTOMER table for customers whose zip code is 95141.

SELECT INFO FROM CUSTOMER
 WHERE XMLEXISTS('$x/customerinfo/address[@zip=”95141”]'
 PASSING CUSTOMER.INFO AS "x")

To be compatible with this query, the XML index needs to include the zip attribute node among the
indexed nodes, and to store values in the index as a VARCHAR type.

The query can use this XML index:

CREATE INDEX CUST_ZIP_STR on CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN '/customerinfo/address/@zip'
 AS VARCHAR(10)

Example: Suppose that you change the query in the previous example to look like this:

SELECT INFO FROM CUSTOMER
 WHERE XMLEXISTS('$x//address[@zip=”95141”]'
 PASSING CUSTOMER.INFO AS "x")

Index CUST_ZIP_STR in the previous example cannot be used for this query because the XPath
expression in the XMLEXISTS predicate now specifies a superset of the nodes that the index specifies.
In the query, the zip attribute node is under an address element that is the descendant of any node.

Chapter 3. XML data indexing 93

https://www.ibm.com/docs/en/SSEPEK_11.0.0/perf/src/tpc/db2z_multipleindexaccess.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/usrtab/src/tpc/db2z_plantable.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_xmlexistspredicate.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Index CUST_ZIP_STR specifies only the zip attribute under the address element that is a child of the
customerinfo element. Define an index like this for use with the query in this example:

CREATE INDEX CUST_ZIP_STR2 ON CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN '//address/@zip'
 AS VARCHAR(10)

Example: The following query includes an equal predicate on a numeric type. It retrieves documents from
the DESCRIPTION column of the PRODUCT table for items with a price equal to 9.99.

SELECT INFO FROM CUSTOMER
 WHERE XMLEXISTS('$x//address[@zip="95141"]'
 PASSING CUSTOMER.INFO AS "x")

To be compatible, the XML index needs to include price nodes among the indexed nodes, and to store
values as the DECFLOAT type.

The query can use this XML index:

CREATE INDEX PRODINDEX ON PRODUCT(DESCRIPTION)
 GENERATE KEY USING XMLPATTERN '//price' AS SQL DECFLOAT

Example: The following query includes an equal predicate on a text node. It retrieves all documents from
the Info column of the sample Customer table for which the assistant name is Gopher Runner.

SELECT INFO FROM CUSTOMER
 WHERE XMLEXISTS('$x/customerinfo/assistant[name="Gopher Runner"]'
 PASSING BY REF INFO AS "x")

To be compatible with this query, the XML index needs to include the text node within the name element
that is under the assistant element, and needs to store values in the index as a VARCHAR type.

The query can use this XML index:

CREATE INDEX CUSTINDEX on CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN '/customerinfo/assistant/name/text()'
 AS SQL VARCHAR(20)

Examples of XML index usage by predicates that test for node existence
If an XMLEXISTS predicate contains the fn:exists or fn:not function, it matches an XML index that contains
the fn:exists or fn:not function.

Example: The following query retrieves all customerinfo documents from the INFO column of the
CUSTOMER table for which the address node has a zip attribute.

SELECT INFO FROM CUSTOMER
 WHERE XMLEXISTS('$x/customerinfo/address[fn:exists(@zip)]'
passing CUSTOMER.INFO as "x")

The following query retrieves all customerinfo documents from the INFO column of the CUSTOMER table
for which the address node does not have a zip attribute.

SELECT INFO FROM CUSTOMER
 WHERE XMLEXISTS('$x/customerinfo/address[fn:not(@zip)]'
passing CUSTOMER.INFO as "x")

Both of these queries can use the following XML index:

CREATE INDEX CUST_ZIP_EXISTENCE on CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN '/customerinfo/address/fn:exists(@zip)'
 AS VARCHAR(1)

For queries that test for existence, VARCHAR(1) is the compatible data type for the XML index, because
the index key values can be only 'T' or 'F'.

94 Db2 11 for z/OS: pureXML Guide

Example of XML index usage by predicates with case-insensitive
comparisons

In XML, string comparisons are case-sensitive. However, some applications might require case-
insensitive comparisons. You can use the fn:upper-case function to do a case-insensitive comparison.

Example: The following query retrieves all XML documents from the INFO column of the CUSTOMER table
for customers whose child address has a street whose upper-case is “BAILEY AVE”. The query will return
the XML document, when the street is “Bailey Ave”, or “bailey ave”, or “Bailey AVE”, and so on.

SELECT INFO FROM CUSTOMER
 WHERE XMLEXISTS('$x/customerinfo/address[fn:upper-case(street) =
 "BAILEY AVE"]'
 PASSING CUSTOMER.INFO AS "x")

The following index can be used for the predicate:

CREATE INDEX CUST_STREET_UPPER on CUSTOMER(INFO)
 GENERATE KEY USING XMLPATTERN '/customerinfo/address/street/fn:upper-case(.)'
 AS VARCHAR(50)

Example of index usage for an XMLEXISTS predicate with the fn:starts-with
function

An XMLEXISTS predicate that contains the fn:starts-with function and an XML index need to meet several
conditions for an index match.

Those conditions are:

• In the XMLEXISTS predicate, the second argument of the fn:starts-with function must be a string literal.
• The XML index must have the VARCHAR type.
• The pattern expression in the index must match the XPath expression in the predicate, except for the

fn:starts-with function.

Example: The following query includes a predicate that checks whether the productName value starts
with the string "Lapis".

SELECT PORDER FROM PURCHASEORDER
 WHERE XMLEXISTS(
 '/purchaseOrder/items/item[fn:starts-with(productName,"Lapis")]'
 PASSING PURCHASEORDER.PORDER)

The following index matches the predicate.

CREATE INDEX POSTRTSW ON PURCHASEORDER(PORDER)
 GENERATE KEYS USING XMLPATTERN
 '/purchaseOrder/items/item/productName'
 AS SQL VARCHAR(20)

Example of index usage for an XMLEXISTS predicate with the fn:substring
function

An XMLEXISTS predicate that contains the fn:substring function and an XML index need to meet the
several conditions for an index match.

Those conditions are:

• In the XMLEXISTS predicate:

– The second argument of the fn:substring functions must be 1.
– The operand to which the expression that contains the fn:substring function is compared is a string

literal.

Chapter 3. XML data indexing 95

– The third argument of the fn:substring function must be an integer constant that is equal to the length
of the string literal.

• The pattern expression in the index must match the XPath expression in the predicate, except for the
fn:substring function.

Example: The following query includes a predicate that checks whether the productName value is the
string "Lapis", with the characters in uppercase or lowercase.

SELECT PORDER FROM PURCHASEORDER
 WHERE XMLEXISTS(
 '/purchaseOrder/items/item[fn:substring(productName, 1,5)= "LAPIS"]'
 PASSING PURCHASEORDER.PORDER)

The following index matches the predicate.

CREATE INDEX POSUBSTR ON PURCHASEORDER(PORDER)
 GENERATE KEYS USING XMLPATTERN
 '/purchaseOrder/items/item/productName'
 AS SQL VARCHAR(20)

Example of XML index usage by join predicates
If an XMLEXISTS predicate contains a join of two tables, the join condition compares two XPath
expressions. An XML index that the predicate uses must be on the first table in the join order, and the
XPath expression must match both XPath expressions in the join condition.

Example: The following query retrieves XML documents from the CUSTOMER and ORDER tables for which
a customer ID in the CUSTOMER table matches the customer ID in the ORDER table. The customer IDs
are compared as strings.

SELECT INFO FROM CUSTOMER, ORDER
 WHERE XMLEXISTS('$x/customerinfo[@Cid = $y/order/customer/@id/fn:string(.)]'
 passing CUSTOMER.INFO as "x", ORDER.ORDERINFO as "y")

The first table in the join is the CUSTOMER table, so the query can use the following XML index on the
CUSTOMER table:

CREATE INDEX CUST_CID_STR ON CUSTOMER(INFO)
 GENERATE KEYS USING XMLPATTERN
 ‘/customerinfo/@Cid'
 AS SQL VARCHAR(10)

Because the XPath expressions in the join predicate are compared as strings, the index must store entries
in the index as the VARCHAR type.

Example: The following query retrieves XML documents from the ORDER and CUSTOMER tables for which
a customer ID in the ORDER table matches the customer ID in the CUSTOMER table. The customer IDs
are compared as numeric values.

SELECT INFO FROM CUSTOMER, ORDER
 WHERE XMLEXISTS('$y/order/customer[@id = $x/customerinfo/@id/xs:decimal(.)]'
 passing CUSTOMER.INFO as "x", ORDER.ORDERINFO as "y")

The first table in the join is the ORDER table, so the query can use the following XML index on the ORDER
table:

CREATE INDEX ORDER_CID_NUM ON ORDER(ORDERINFO)
 GENERATE KEYS USING XMLPATTERN
 ‘/order/customer/@id'
 AS SQL DECFLOAT

Because the XPath expressions in the join predicate are compared as numeric values, the index must
store entries in the index as the DECFLOAT type.

96 Db2 11 for z/OS: pureXML Guide

Example of XML index usage by queries with XMLTABLE
If the FROM clause of a query contains an XMLTABLE function with a row-XQuery-expression, and Db2
transforms the query to contain an XMLEXISTS predicate, after transformation, the query can use an XML
index.

The original query might have an XMLTABLE function with a row-XQuery-expression, or the query might
be the result of transformation of an SQL predicate to an XPath predicate in a row-XQuery-expression.

Suppose that the CUSTOMER table contains this document in the INFO column:

<customerinfo xmlns="http://posample.org" Cid="1010">
 <name>Elaine Decker</name>
 <addr zip="95999">
 <street>100 Oak</street>
 <city>Mountain Valley</city>
 <state>CA</state>
 <country>USA</country>
 </addr>
 <phone type="work">408-555-2310</phone>
</customerinfo>

Example: The following query uses the XMLTABLE function to retrieve the zip, street, city, and state
elements from customerinfo documents as columns in a result table.

SELECT X.*
 FROM CUSTOMER,
 XMLTABLE (XMLNAMESPACES(DEFAULT 'http://posample.org'),
 '$x/customerinfo/address[@zip=95999]'
 PASSING INFO as "x"
 COLUMNS
 ZIP INT PATH '@zip',
 STREET VARCHAR(50) PATH 'street',
 CITY VARCHAR(30) PATH 'city',
 STATE VARCHAR(2) PATH 'state') AS X

The original query cannot use an XML index. However, the original query has a row-XQuery-expression
that Db2 can transform into an XMLEXISTS predicate. After transformation, the query looks like this:

SELECT X.*
 FROM CUSTOMER,
 XMLTABLE (XMLNAMESPACES(DEFAULT 'http://posample.org'),
 '$x/customerinfo/address[@zip=95999]'
 PASSING INFO as "x"
 COLUMNS
 ZIP INT PATH '@zip',
 STREET VARCHAR(50) PATH 'street',
 CITY VARCHAR(30) PATH 'city',
 STATE VARCHAR(2) PATH 'state') AS X
 WHERE XMLEXISTS('$x/customerinfo/address[@zip=95999]'
 PASSING INFO AS "x")

The transformed query can use this index:

CREATE INDEX ORDER_ZIP_NUM ON CUSTOMER(INFO)
 GENERATE KEYS USING XMLPATTERN
 'declare default element namespace "http://posample.org/";
 /customerinfo/address/@zip'
 AS SQL DECFLOAT

The XML index needs to be defined on the INFO column of the CUSTOMER table because the XMLEXISTS
predicate in the transformed query uses the INFO column of the CUSTOMER table.

Example: The following query retrieves the same information as the query in the previous example, but
an SQL predicate determines which rows are returned.

SELECT X.*
 FROM CUSTOMER,
 XMLTABLE (XMLNAMESPACES(DEFAULT 'http://posample.org'),
 '$x/customerinfo/address'

Chapter 3. XML data indexing 97

 PASSING INFO AS “x”
 COLUMNS
 ZIP INT PATH '@zip',
 STREET VARCHAR(50) PATH 'street',
 CITY VARCHAR(30) PATH 'city',
 STATE VARCHAR(2) PATH 'state') AS X
 WHERE X.ZIP = 95999

Db2 can transform the query so that the SQL predicate becomes an XPath predicate in the row-XQuery-
expression of the XMLTABLE function. The transformed query looks like this:

SELECT X.*
 FROM CUSTOMER,
 XMLTABLE (XMLNAMESPACES(DEFAULT 'http://posample.org'),
 '$x/customerinfo/address/[@zip=95999]'
 PASSING INFO AS “x”
 COLUMNS
 ZIP INT PATH '@zip',
 STREET VARCHAR(50) PATH 'street',
 CITY VARCHAR(30) PATH 'city',
 STATE VARCHAR(2) PATH 'state') AS X

Db2 can then transform the query again so that the row-XQuery-expression becomes an XMLEXISTS
predicate. After transformation, the query looks like this:

SELECT X.*
 FROM CUSTOMER,
 XMLTABLE (XMLNAMESPACES(DEFAULT 'http://posample.org'),
 '$x/customerinfo/address[@zip=95999]'
 PASSING INFO as "x"
 COLUMNS
 ZIP INT PATH '@zip',
 STREET VARCHAR(50) PATH 'street',
 CITY VARCHAR(30) PATH 'city',
 STATE VARCHAR(2) PATH 'state') AS X
 WHERE XMLEXISTS('$x/customerinfo/address[@zip=95999]'
 PASSING INFO AS "x")

The transformed query can use this index:

CREATE INDEX ORDER_ZIP_NUM ON CUSTOMER(INFO)
 GENERATE KEYS USING XMLPATTERN
 'declare default element namespace "http://posample.org/";
 /customerinfo/address/@zip'
 AS SQL DECFLOAT

Related concepts
Transformation of SQL predicates to XML predicates (Db2 Performance)

98 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/perf/src/tpc/db2z_pushdown4xmlpred.html

Chapter 4. XML support in Db2 utilities
You can use IBM Db2 for z/OS utilities on XML objects. The utilities handle XML objects similar to the way
that they handle LOB objects. For some utilities, you need to specify certain XML keywords.
CHECK DATA

In addition to checking LOB relationships, the CHECK DATA utility also checks XML relationships.

CHECK DATA can check the consistency between a base table space and the corresponding XML table
spaces.

In addition, if you specify the INCLUDE XML TABLESPACES option, CHECK DATA can check the
structural integrity of XML documents. CHECK DATA can verify the following items for XML objects:

• All rows in an XML column exist in the XML table space.
• All documents in the XML table space are structurally valid.
• Each index entry in the node ID index has a corresponding XML document.
• Each XML document in the XML table space has corresponding entries in the node ID index.
• Each entry in the document ID column in the base table space has a corresponding entry in the

node ID index over the XML table space.
• Each entry in the node ID index contains a corresponding value in the document ID column.
• Each value in the document ID column has a corresponding entry in the document ID index.
• Each entry in the document ID index has a corresponding value in the document ID column.
• If an XML column has an XML type modifier, all XML documents in the column are valid with respect

to at least one XML schema that is associated with the XML type modifier.

If the base table space is not consistent with any related XML table spaces, or a problem is found
during any of the previously listed checks, CHECK DATA reports the error.

For XML checking, the default behavior of CHECK DATA is to check only the consistency between each
XML column and its node ID index. However, you can modify the scope of checking by specifying
combinations of the CHECK DATA SCOPE keyword and the INCLUDE XML TABLESPACES keyword. The
following table lists keyword combinations and the types of checks that are performed.

Table 21. CHECK DATA SCOPE and INCLUDE XML TABLESPACES keywords that control the scope of
XML checking

Scope of XML checking SCOPE keyword
INCLUDE XML TABLESPACES
keyword

Consistency of XML base
table column and node ID
index only

SCOPE AUXONLY, SCOPE ALL, or
SCOPE PENDING

Not specified

All XML checking SCOPE ALL or SCOPE PENDING INCLUDE XML TABLESPACES

All XML checking except
XML schema validation

SCOPE ALL or SCOPE PENDING INCLUDE XML TABLESPACES
XMLSCHEMA

XML schema validation only SCOPE XMLSCHEMAONLY INCLUDE XML TABLESPACES

For example, table space DSNXDX1A.DSNXSX1D contains a table named XMLTBL with XML column
XMLCOL, which has an XML type modifier. If you specify the following statement, CHECK DATA
checks LOB relationships, the base table space, XML relationships, and the structural integrity of
XML documents for column XMLCOL, and does XML schema validation on the documents for column
XMLCOL:

© Copyright IBM Corp. 2007, 2021 99

https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_checkdata.html

CHECK DATA TABLESPACE DSNXDX1A.DSNXSX1D
 INCLUDE XML TABLESPACES(TABLE XMLTBL XMLCOLUMN XMLCOL)

If you specify the following statement, CHECK DATA checks LOB relationships, the base table space,
XML relationships, and the structural integrity of XML documents for column XMLCOL, but does not do
XML schema validation on the documents for column XMLCOL:

CHECK DATA TABLESPACE DSNXDX1A.DSNXSX1D
 INCLUDE XML TABLESPACES(TABLE XMLTBL XMLCOLUMN XMLCOL) XMLSCHEMA

You can also specify the action that Db2 performs when it finds an error in one of these columns by
specifying one of the following appropriate keywords:

Table 22. CHECK DATA error keywords

Column in error Action that CHECK DATA takes Keyword

XML column Report the error only XMLERROR REPORT

Report the error, set the column in error to an
invalid status, and delete the invalid documents in
the XML table space

XMLERROR INVALIDATE

LOB column Report the error only LOBERROR REPORT

Report the error and set the column in error to an
invalid status

LOBERROR INVALIDATE

XML or LOB
column

Report the error only AUXERROR REPORT

Report the error and set the column in error to an
invalid status

AUXERROR INVALIDATE

For example, the following statement specifies that CHECK DATA is to check XML and LOB
relationships. Db2 is to report any LOB errors and XML errors, and set any XML columns in error
to an invalid status.

CHECK DATA TABLESPACE DSNXDX1A.DSNXSX1D
 SCOPE AUXONLY
 LOBERROR REPORT
 XMLERROR INVALIDATE

CHECK INDEX

You can use the CHECK INDEX utility to check XML indexes, document ID indexes, and node ID
indexes. You do not need to specify any additional keywords.

COPY

You can use the COPY utility to copy XML objects. You do not need to specify any additional keywords.
When you specify that Db2 is to copy a table space with XML columns, Db2 does not automatically
copy any related XML table spaces or indexes. You must explicitly specify the XML objects that you
want to copy.

For example, the following statement specifies that Db2 is to copy base table space DB1.BASETS1
and the XML table space DB1.XBAS0001.

//COPYX EXEC DSNUPROC,SYSTEM=DSN
//SYSIN DD *
 TEMPLATE A DSN(&DB..&SP..COPY1) UNIT CART STACK YES
COPY TABLESPACE DB1.BASETS1 COPYDDN(A)
 TABLESPACE DB1.XBAS0001 COPYDDN(A)

COPYTOCOPY

You can use the COPYTOCOPY utility to copy existing copies of the XML objects. You do not need to
specify any additional keywords.

100 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_checkindex.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_copy.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_copytocopy.html

EXEC SQL

You cannot declare a cursor that includes XML data. Thus, you cannot use the Db2 UDB family
cross-loader function to transfer data in XML columns. However, you can declare a cursor on a table
with XML columns if the cursor does not include any XML columns.

For example, suppose that you create the following table with an XML column:

CREATE TABLE ORDERS
 (ORDERNO INTEGER,
 PURCHASE_ORDER XML);

You cannot declare the following cursor, because it includes XML data in the PURCHASE_ORDER
column:

EXEC SQL
 DECLARE C1 CURSOR FOR SELECT * FROM ORDERS
ENDEXEC

However, you can declare a cursor that includes non-XML columns, as in the following example:

EXEC SQL
 DECLARE C2 CURSOR FOR SELECT ORDERNO FROM ORDERS
ENDEXEC

LISTDEF

When you create object lists with the LISTDEF utility, you can specify whether you want related XML
objects to be included or excluded. Use the following keywords to indicate the objects to include or
exclude:
ALL

Base, LOB, and XML objects (This keyword is the default.)
BASE

Base objects only
LOB

LOB objects only.
XML

XML objects only.

For example, the LISTDEF statements in the following table generate the indicated lists.

Table 23. Example LISTDEF statements

LISTDEF statement Objects that are included in the list

LISTDEF LISTALL INCLUDE TABLESPACES DATABASE ACCOUNTS
 INCLUDE INDEXSPACES DATABASE ACCOUNTS

• All tables spaces in the ACCOUNTS database,
including XML and LOB table spaces

• All index spaces in the ACCOUNTS database

LISTDEF LISTXML INCLUDE TABLESPACES DATABASE ACCOUNTS
XML
 INCLUDE INDEXSPACES DATABASE ACCOUNTS
XML

• All XML table spaces in the ACCOUNTS
database

• All XML index spaces in the ACCOUNTS
database

LISTDEF LIST INCLUDE TABLESPACES DATABASE ACCOUNTS
ALL
 INCLUDE INDEXSPACES DATABASE ACCOUNTS
ALL
 EXCLUDE INDEXSPACES DATABASE ACCOUNTS
XML

• All tables spaces in the ACCOUNTS database,
including XML and LOB table spaces

• All index spaces the ACCOUNTS database
except for XML index spaces

Chapter 4. XML support in Db2 utilities 101

https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_execsql.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_listdef.html

LOAD

You can use the LOAD utility to load XML data.

The input data can be in the textual XML format or the binary XML format (Extensible Dynamic Binary
XML Db2 Client/Server Binary XML Format). Binary XML input data must be in the non-delimited
format.

If you load data into an XML column that has an XML type modifier, the LOAD utility validates the input
data according to the XML schema that is specified in the XML type modifier. If LOAD detects an XML
schema violation for a row, it deletes the row and issues an error message.

The steps for loading XML data are similar to the steps for loading other types of data, except that you
need to also perform the following actions:

• In the input data set:

– If the data set is in delimited format, ensure that the XML input fields follow the standard LOAD
utility delimited format.

– If the data set is not in delimited format, specify the XML input fields similar to the way that you
specify VARCHAR input. Specify the length of the field in a 2-byte binary field that precedes the
data.

• In the LOAD statement:

– Specify the keyword XML for all input fields of type XML.
– If you want the whitespace to be preserved in the XML data, also specify the keywords PRESERVE

WHITESPACE. By default, LOAD strips the whitespace.

When data in the binary XML format is loaded into a table, and PRESERVE WHITESPACE is not
specified, Db2 strips whitespace only when the input data contains whitespace tags.

For example, the following LOAD statement specifies that Db2 is to load data from the MYSYSREC
data set into the PRODUCTS table:

LOAD DATA INDDN(MYSYSREC)
 INTO TABLE PRODUCTS
 (CATEGORY POSITION (1) CHAR(8),
 PURCHASE_ORDER POSITION (10) XML PRESERVE WHITESPACE)

Assume that the MYSYSREC data set logically contains the following data: (This example is a logical
representation and is not intended to show how the data actually looks in the input data set.)

Shovel 339<product pid="100-100-01" xmlns="http://podemo.org">
 <description>
 <name>Snow Shovel, Basic 22"</name>
 <details>Basic Snow Shovel, 22" wide, straight handle with D-Grip<details>
 <price>9.99</price>
 <weight>1 kg<weight>
 </description>
 <product>

Shovel 358<product pid="100-101-01" xmlns="http://podemo.org">
 <description>
 <name>Snow Shovel, Deluxe 24"</name>
 <details>A Deluxe Snow Shovel, 24 inches wide, ergonomic curved handle with
 D-Grip<details>
 <price>19.99</price>
 <weight>2 kg<weight>
 </description>
 <product>

After loading this data, the PRODUCTS table contains the following information:

102 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_load.html

Table 24. PRODUCTS table

DB2_GENERATED
_document
ID_FOR_XML1 CATEGORY PURCHASE_ORDER

1 Shovel <product pid="100-100-01" xmlns="http://podemo.org">
 <description>
 <name>Snow Shovel, Basic 22"</name>
 <details>Basic Snow Shovel, 22" wide, straight handle
 with D-Grip</details>
 <price>9.99</price>
 <weight>1 kg<weight>
 </description>
<product>

2 Shovel <product pid="100-101-01" xmlns="http://podemo.org">
 <description>
 <name>Snow Shovel, Deluxe 24"</name>
 <details>A Deluxe Snow Shovel, 24 inches wide,
 ergonomic curved handle with D-Grip</details>
 <price>19.99</price>
 <weight>2 kg<weight>
 </description>
<product>

Note:

1. Db2 automatically generates the document ID column for each row that is loaded into a table
with at least one XML column. The document ID column is partially hidden. It is not included in
the result set of a SELECT * statement. However, you can query this column by name and view
information about this column and its index in the catalog. Several utilities report information on
this column in their output.

Loading XML data with the LOAD utility has the following restrictions:

• You cannot specify that XML input fields be loaded into non-XML columns, such as CHAR or
VARCHAR columns.

• Db2 does not perform any specified compression until the next time that you run the REORG utility
on this data.

• Db2 ignores any specified FREEPAGE and PCTFREE values until the next time that you run the
REORG utility on this data.

• If you specify PREFORMAT, Db2 preformats the base table space, but not the XML table space.
• You cannot directly load the document ID column of the base table space.
• You cannot specify a default value for an XML column.
• You cannot load XML values that are greater than 32 KB. To load such values, use file reference

variables in the LOAD utility, or use applications with SQL XML AS file reference variables.

QUIESCE

When you specify QUIESCE TABLESPACESET, the table space set includes related XML objects. You do
not have to specify any additional keywords in the QUIESCE statement.

REBUILD INDEX

You can use the REBUILD INDEX utility to rebuild XML indexes, document ID indexes, and node
ID indexes. You do not need to specify any additional keywords in the REBUILD INDEX statement.
REBUILD INDEX with SHRLEVEL CHANGE is not valid for XML indexes.

Chapter 4. XML support in Db2 utilities 103

https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_quiesce.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html

RECOVER

You can use the RECOVER utility to recover XML objects. You do not need to specify any additional
keywords in the RECOVER statement.

When you recover an XML index or table space to a point in time, you should recover all related
objects to the same point in time. Related objects include XML objects, LOB objects, and referentially
related objects. If you do not recover all related objects to the same point in time, one or more objects
might be placed in a restrictive state.

REORG INDEX

You can use the REORG utility to reorganize XML indexes. When you specify that you want XML
indexes to be reorganized, you must also specify the WORKDDN keyword and provide the specified
temporary work file. The default is SYSUT1.

REORG TABLESPACE

You can use the REORG TABLESPACE utility to reorganize XML objects. You do not need to specify any
additional keywords in the REORG statement.

When you specify the name of the base table space in the REORG statement, Db2 reorganizes only
that table space and not any related XML objects. If you want Db2 to reorganize the XML objects, you
must specify those object names.

When you run REORG on an XML table space that supports XML versions, REORG discards rows for
versions of an XML document that are no longer needed.

For XML table spaces and base table spaces with XML columns, you cannot specify the following
options in the REORG statement:

• DISCARD
• REBALANCE
• UNLOAD EXTERNAL

REPAIR

You can use the REPAIR utility on XML objects.

You can use the REPAIR utility to:

• Set the status of an XML column to invalid.
• Delete a corrupted XML document and its node ID index entries.

The most common use for the REPAIR utility for XML objects is to take corrective action after you
run CHECK DATA with SHRLEVEL CHANGE on a table space with XML columns. CHECK DATA with
SHRLEVEL CHANGE operates on shadow data sets, so it does not modify XML columns or XML table
spaces. Instead, CHECK DATA generates REPAIR statements that you can run to delete invalid XML
documents and to mark the corresponding XML columns as invalid.

REPORT

When you specify REPORT TABLESPACESET, the output report includes XML objects in the list of
members in the table space set. The following sample output shows a table space set for a table that
contains a LOB column and an XML column:

TABLESPACE SET REPORT:

TABLESPACE : DBDKCX.TS0001
 TABLE : SYSADM.DKCTEST
 INDEXSPACE : DBDKCX.IRdocument IDD
 INDEX : SYSADM.I_document IDDKCTEST

XML TABLESPACE SET REPORT:

TABLESPACE : DBDKCX.TS0001

 BASE TABLE : SYSADM.DKCTEST

104 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_recover.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_repair.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_report.html

 COLUMN : COL2
 XML TABLESPACE : DBDKCX.XDKC0000
 XML TABLE : SYSADM.XDKCTEST
 XML NODEID INDEXSPACE: DBDKCX.IRNODEID
 XML NODEID INDEX : SYSADM.I_NODEIDXDKCTEST
 XML INDEXSPACE : DBDKCX.VALUES
 XML INDEX : SYSADM.VALUES

RUNSTATS

You can use the RUNSTATS utility to gather statistics for XML objects.

RUNSTATS ignores the following keywords for XML tables and XML indexes:

• COLGROUP
• FREQVAL MOST|LEAST|BOTH
• HISTOGRAM

RUNSTATS INDEX ignores the following keywords for XML indexes:

• KEYCARD
• FREQVAL MOST|LEAST|BOTH
• HISTOGRAM

XML indexes are related to XML tables, and not to the associated base tables. If you specify a base
table space and an XML index in the same RUNSTATS control statement, Db2 generates an error.
When you run RUNSTATS against a base table, RUNSTATS collects statistics only for indexes on the
base table, including the document ID index.

UNLOAD

You can use the UNLOAD utility to unload XML data.

The output data can be in the textual XML format or the binary XML format. Data that is unloaded can
be in the delimited or non-delimited format.

When data is unloaded in the binary XML format, UNLOAD does not add whitespace tags.

In the UNLOAD statement, specify the base table space. (You do not have to specify the XML table
space.) Also specify the XML keyword in the field specifications for the XML columns.

For example, the following UNLOAD statement specifies that Db2 is to unload data from the XMLSAMP
table into the SYSREC data set in delimited format.

//STEP3 EXEC DSNUPROC,UID='JUQBU105.UNLD1',
// UTPROC='',
// SYSTEM='SSTR'
//UTPRINT DD SYSOUT=*
//SYSREC DD DSN=JUQBU105.UNLD1.STEP3.TBQB0501,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPUNCH DD DSN=JUQBU105.UNLD1.STEP3.SYSPUNCH
// DISP=(MOD,CATLG,CATLG)
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD*
 UNLOAD TABLESPACE DBQB0501.XMLSAMP
 DELIMITED CHARDEL X'22' COLDEL X'2C' DECPT X'2E'
 FROM TABLE ADMF001.BASETBL
 (CATEGORY POSITION(*) CHAR,
 PURCHASE_ORDER POSITION(*) XML)
 UNICODE
 /*

Assume that the table contains the data in Table 24 on page 103. The output, delimited data is:

Shovel,"<product pid=""100-100-01"" xmlns="http://podemo.org"">
 <description>
 <name>Snow Shovel, Basic 22""</name>
 <details>Basic Snow Shovel, 22"" wide, straight handle with D-Grip<details>
 <price>9.99</price>
 <weight>1 kg<weight>
 </description>
 <product>"

Chapter 4. XML support in Db2 utilities 105

https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_runstats.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_utl_unload.html

Shovel,"<product pid=""100-101-01"" xmlns="http://podemo.org"">
 <description>
 <name>Snow Shovel, Deluxe 24""</name>
 <details>A Deluxe Snow Shovel, 24 inches wide, ergonomic curved handle with
 D-Grip<details>
 <price>19.99</price>
 <weight>2 kg<weight>
 </description>
 <product>"

For maximum portability, specify UNICODE in the UNLOAD statement and use Unicode delimiter
characters. If XML columns are not being unloaded in UTF-8 CCSID 1208, the unloaded column
values are prefixed with a standard XML encoding declaration that specifies the encoding that is used.

Unloading XML data with the UNLOAD utility has the following restrictions:

• You cannot specify that the XML data be converted to another data type, such as CHAR or VARCHAR.
• You cannot unload XML data from a copy.

Inline statistics and inline copies

When you request that a utility gathers statistics or make a copy inline, the following restrictions
apply:

• You cannot take inline copies of XML table spaces.
• When you request inline statistics or inline copies for the base table space, Db2 does not take

copies or gather statistics for any related XML table spaces. You must explicitly specify that you
want statistics gathered for any XML table spaces.

• When you request that inline statistics be collected for an XML index, you cannot specify the
following statistic keywords:

– HISTOGRAM
– KEYCARD
– FREQVAL NUMCOLS COUNT

Stand-alone utilities

Stand-alone utilities have no specific options to support XML data. However, you can use stand-alone
utilities on XML data.

The DSN1COPY utility has the following restriction on use with XML data:

• Do not use DSN1COPY to copy XML table spaces from one subsystem to another.

Related concepts
XML schema validation with an XML type modifier
You can automate XML schema validation by adding an XML type modifier to an XML column definition.
XML versions
Multiple versions of an XML document can coexist in an XML table. The existence of multiple versions
of an XML document can lead to improved concurrency through lock avoidance. In addition, multiple
versions can save real storage by avoiding a copy of the old values in the document into memory in some
cases.

106 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/ugref/src/tpc/db2z_standaloneutilities.html

Chapter 5. XML schema management with the XML
schema repository (XSR)

A Db2 for z/OS XML schema repository (XSR) is a set of Db2 tables where you can store XML schemas.

Db2 creates the XSR tables during installation or migration. After you add XML schemas to the Db2 XSR,
you can use them to validate XML documents before you store them in XML columns.

When you validate an XML document against a schema, Db2 returns a binary representation of
the document, which includes default values and normalized text. XML schemas contain data type
information for the data that is stored in an XML value, but Db2 for z/OS does not use or store that
data type information.

An XML schema consists of a set of XML schema documents. To add an XML schema to the Db2 XSR, you
register XML schema documents to Db2. The XML schema documents must be in the Unicode encoding
scheme.

You can register an XML schema in any of the following ways:

• Call the following Db2-supplied stored procedures from a Db2 application program:
SYSPROC.XSR_REGISTER

Begins registration of an XML schema. You call this stored procedure when you add the first XML
schema document to an XML schema.

SYSPROC.XSR_ADDSCHEMADOC
Adds additional XML schema documents to an XML schema that you are in the process of
registering. You can call SYSPROC.XSR_ADDSCHEMADOC only for an existing XML schema that is
not yet complete.

SYSPROC.XSR_COMPLETE
Completes the registration of an XML schema.

During XML schema completion, Db2 resolves references inside XML schema documents to other
XML schema documents.

• Invoke the following JDBC method from a Java application program:
com.ibm.db2.jcc.DB2Connection.registerDB2XmlSchema

Performs the functions of SYSPROC.XSR_REGISTER, SYSPROC.XSR_ADDSCHEMADOC, and
SYSPROC.XSR_COMPLETE.

• Invoke the following commands from the Command Line Processor:
REGISTER XMLSCHEMA

Begins registration of an XML schema. You invoke this command when you add the first XML schema
document to an XML schema.

ADD XMLSCHEMA DOCUMENT
Adds additional XML schema documents to an XML schema that you are in the process of
registering. You can invoke -ADD XMLSCHEMA DOCUMENT only for an existing XML schema that
is not yet complete.

COMPLETE XMLSCHEMA
Completes the registration of an XML schema.

To remove an XML schema from the Db2 XSR, you can use one of the following techniques:

• Call the following Db2-supplied stored procedure SYSPROC.XSR_REMOVE from a Db2 application
program.

• Invoke the JDBC method com.ibm.db2.jcc.DB2Connection.deregisterDB2XMLObject from a
Java application program.

© Copyright IBM Corp. 2007, 2021 107

Related concepts
The Db2 command line processor (Db2 Commands)

Procedures for XML schema registration and removal that are
supplied with Db2

Db2 provides several stored procedures that you can call in your application programs to perform XML
schema registration and removal.

Those stored procedures are:

Table 25. XML schema stored procedures

Stored procedure name Function

XSR_REGISTER The XSR_REGISTER procedure is the first stored procedure to be called
as part of the XML schema registration process.

XSR_ADDSCHEMADOC The XSR_ADDSCHEMADOC stored procedure is used to add every XML
schema other than the primary XML schema document.

XSR_COMPLETE The XSR_COMPLETE procedure is the final stored procedure to be called
as part of the XML schema registration process.

XSR_REMOVE The XSR_REMOVE procedure is used to remove all components of an XML
schema.

Example of XML schema registration and removal using stored
procedures

Db2 provides the SYSPROC.XSR_REGISTER, SYSPROC.XSR_ADDSCHEMADOC,
SYSPROC.XSR_COMPLETE, and SYSPROC.XSR_REMOVE stored procedures. These stored procedures let
you register and remove XML schemas and their components.

To register an XML schema with a single XML schema document, you call SYSPROC.XSR_REGISTER and
SYSPROC.XSR_COMPLETE.

To register an XML schema with several XML schema documents, you call SYSPROC.XSR_REGISTER for
the first schema document, call SYSPROC.XSR_ADDSCHEMADOC once for each of the other schema
documents, and then call SYSPROC.XSR_COMPLETE.

To remove an XML schema, you call SYSPROC.XSR_REMOVE.

To modify the contents of an XML schema for which you have already called SYSPROC.XSR_COMPLETE,
you need to call SYSPROC.XSR_REMOVE and begin the registration process again.

Example: The following code performs these steps:

1. Registers an XML schema with an XML schema document.
2. Adds another XML schema document to the XML schema.
3. Completes registration of the XML schema.
4. Drops the XML schema.

EXEC SQL BEGIN DECLARE SECTION;
/**/
/* Declare variables: */
/* For SYSPROC.XSR_REGISTER parameters: */
/* Parameter name Value */
/* rschema Schema of the XML schema (must be 'SYSXSR')*/
/* name XML schema name */
/* schemaLocation URI for the XML schema */
/* content XML schema document to be registered */
/* docProperties XML schema document information for an */
/* external XML schema registry */

108 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/comref/src/tpc/db2z_commandlineprocessor.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sp_xsrregister.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sp_xsraddschemadoc.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sp_xsrcomplete.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sp_xsrremove.html

/* For SYSPROC.XSR_ADDSCHEMADOC parameters: */
/* Parameter name Value */
/* rschema Same as for SYSPROC.XSR_REGISTER */
/* name Same as for SYSPROC.XSR_REGISTER */
/* schemaLocation Same as for SYSPROC.XSR_REGISTER */
/* content Same as for SYSPROC.XSR_REGISTER */
/* docProperties Same as for SYSPROC.XSR_REGISTER */
/* For SYSPROC.XSR_COMPLETE parameters: */
/* Parameter name Value */
/* rschema Same as for SYSPROC.XSR_REGISTER */
/* name Same as for SYSPROC.XSR_REGISTER */
/* schemaProperties XML schema information for an external */
/* XML schema registry */
/* issuedForDecomp Indicator: Must be 0 */
/* For SYSPROC.XSR_REMOVE parameters: */
/* Parameter name Value */
/* rschema Same as for SYSPROC.XSR_REGISTER */
/* name Same as for SYSPROC.XSR_REGISTER */
/**/
struct {
 short len;
 char text[128]; } rschema;
struct {
 short len;
 char text[128]; } name;
struct {
 short len;
 char text[1000]; } schemaLocation;
SQL TYPE IS BLOB (1M) content;
SQL TYPE IS BLOB (1M) docProperties;
SQL TYPE IS BLOB (1M) schemaProperties;
long issuedForDecomp;
EXEC SQL END DECLARE SECTION;
…
main
{
 /**/
 /* Assign the schema for the XML schema ('SYSXSR') to rschema. */
 /**/
 strcpy(rschema.text,"SYSXSR");
 rschema.len=strlen(rschema.text);
 /**/
 /* Assign the XML schema name 'ORDER' to name. */
 /**/
 strcpy(name.text,"ORDER");
 name.len=strlen(name.text);
 /**/
 /* Assign the XML schema location 'http://posample.org' to */
 /* schemaLocation. */
 /**/
 strcpy(schemaLocation.text,"http://posample.org");
 schemaLocation.len=strlen(schemaLocation.text);
 …
 /**/
 /* Read the first XML schema document into host variable content */
 /* from a file. */
 /**/
 …
 /**/
 /* No information for this XML schema document needs to be stored */
 /* for an external registry, so set docProperties to NULL. */
 /**/
 EXEC SQL SET :docProperties = NULL;
 /**/
 /* Call the SYSPROC.XSR_REGISTER to register SYSXSR.ORDER. */
 /**/
 EXEC SQL
 CALL SYSPROC.XSR_REGISTER
 (:rschema,:name,:schemaLocation,:content,:docProperties);
 …
 /**/
 /* Read the second XML schema document into host variable content */
 /* from a file. */
 /**/
 …
 /**/
 /* Copy the contents of the second XML schema document into host */
 /* host variable docProperties for storage in the XML schema */
 /* repository. */
 /**/
 EXEC SQL SET :docProperties = :content;
 /**/

Chapter 5. XML schema management with the XML schema repository (XSR) 109

 /* Call the SYSPROC.XSR_ADDSCHEMADOC to register add the second */
 /* document to SYSXSR.ORDER. */
 /**/
 EXEC SQL
 CALL SYSPROC.XSR_ADDSCHEMADOC
 (:rschema,:name,:schemaLocation,:content,:docProperties);
 /**/
 /* No information for this XML schema needs to be stored */
 /* for an external registry, so set schemaProperties to NULL. */
 /**/
 EXEC SQL SET :schemaProperties = NULL;
 /**/
 /* Set schemaProperties to NULL because we are not going to store */
 /* any schema properties for SYSXSR.ORDER. */
 /**/
 EXEC SQL SET :schemaProperties=NULL;
 /**/
 /* Set issuedForDecomp to 0 because we are not going to use */
 /* SYSXSR.ORDER for decomposition. */
 /**/
 issuedForDecomp=0;
 /**/
 /* Call the SYSPROC.XSR_COMPLETE to complete registration of */
 /* SYSXSR.CUSTOMER. */
 /**/
 EXEC SQL
 CALL SYSPROC.XSR_COMPLETE
 (:rschema,:name,:schemaProperties,:issuedForDecomp);
 /**/
 /* Call the SYSPROC.XSR_REMOVE to delete SYSXSR.CUSTOMER from the */
 /* XML schema repository. */
 /**/
 EXEC SQL
 CALL SYSPROC.XSR_REMOVE
 (:rschema,:name);

}

110 Db2 11 for z/OS: pureXML Guide

Chapter 6. Db2 application programming language
support for XML

You can write applications to store XML data in Db2 database tables or retrieve XML data from tables. XML
parameters for external stored procedures or user-defined functions are not supported.

You can use any of the following languages to write your applications:

• C or C++ (in embedded SQL or Db2 ODBC applications)
• COBOL
• Java (JDBC or SQLJ)
• Assembler
• PL/I

An application program can retrieve an entire document or a fragment of a document from an XML
column, or store an entire document or a fragment of a document in an XML column.

When an application provides an XML value to a Db2 database server, the database server converts the
data from the textual XML format to the XML hierarchical format, in Unicode UTF-8 encoding.

When an application retrieves data from XML columns, the Db2 database server converts the data from
the XML hierarchical format to one of the following formats:

• The textual XML format. For the textual XML format, the database server might need to convert the
output data from UTF-8 to the application encoding.

• The XML binary format. This format is an option only for JDBC, SQLJ, or ODBC applications.

When you retrieve XML data, you need to be aware of the effect of code page conversion on data loss.
Data loss can occur when characters in the source code page cannot be represented in the target code
page.

An application can retrieve an entire XML document or a sequence from an XML column.

When you fetch an entire XML document, you retrieve the document into an application variable.

To retrieve an XML sequence, within an SQL FETCH or single-row SELECT INTO operation, you call
the XMLQUERY built-in function, passing an XQuery expression as an argument. XMLQUERY is a scalar
function that returns the entire sequence in an application variable.

Related concepts
XML data encoding
The encoding of XML data can be derived from the data itself, which is known as internally encoded data,
or from external sources, which is known as externally encoded data.

XML data in Java applications
In Java applications, you can store XML data in Db2 databases or retrieve XML data from Db2 databases
by using JDBC or SQLJ.
Related concepts
Java support for XML schema registration and removal (Db2 Application Programming for Java)
XML data in JDBC applications (Db2 Application Programming for Java)
XML column updates in JDBC applications (Db2 Application Programming for Java)
XML data retrieval in JDBC applications (Db2 Application Programming for Java)
XML data in SQLJ applications (Db2 Application Programming for Java)
XML column updates in SQLJ applications (Db2 Application Programming for Java)
XML data retrieval in SQLJ applications (Db2 Application Programming for Java)

© Copyright IBM Corp. 2007, 2021 111

https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0021681.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0021815.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0021816.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0021817.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0021820.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0022137.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0022138.html

Invocation of routines with XML parameters in Java applications (Db2 Application Programming for Java)
XMLCAST in SQLJ applications (Db2 Application Programming for Java)
Binary XML format in Java applications (Db2 Application Programming for Java)

XML data in embedded SQL applications
Embedded SQL applications that are written in assembler language, C, C++, COBOL, or PL/I can update
and retrieve data in XML columns.

In embedded SQL applications, you can:

• Store an entire XML document in an XML column using INSERT or UPDATE statements.
• Retrieve an entire XML document from an XML column using SELECT statements.
• Retrieve a sequence from a document in an XML column by using the SQL XMLQUERY function within

a SELECT or FETCH statement, to retrieve the sequence into a textual XML string in the database, and
then retrieve the data into an application variable.

Recommendation: Follow these guidelines when you write embedded SQL applications:

• Avoid using the XMLPARSE and XMLSERIALIZE functions.

Let Db2 do the conversions between the external and internal XML formats implicitly.
• Use XML host variables for input and output.

Doing so allows Db2 to process values as XML data instead of character or binary string data. If
the application cannot use XML host variables, it should use binary string host variables to minimize
character conversion issues.

• Avoid character conversion by using UTF-8 host variables for input and output of XML values whenever
possible.

Host variable data types for XML data in embedded SQL applications
Db2 provides XML host variable types for assembler, C, C++, COBOL, and PL/I.

Those types are:

• XML AS BLOB
• XML AS CLOB
• XML AS DBCLOB
• XML AS BLOB_FILE (C, C++, or PL/I) or XML AS BLOB-FILE (COBOL)
• XML AS CLOB_FILE (C, C++, or PL/I) or XML AS CLOB-FILE (COBOL)
• XML AS DBCLOB_FILE (C, C++, or PL/I) or XML AS DBCLOB-FILE (COBOL)

The XML host variable types are compatible only with the XML column data type.

You can use BLOB, CLOB, DBCLOB, CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, BINARY, or VARBINARY
host variables to update XML columns. You can convert the host variable data types to the XML type using
the XMLPARSE function, or you can let the Db2 database server perform the conversion implicitly.

You can use BLOB, CLOB, DBCLOB, CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, BINARY, or VARBINARY
host variables to retrieve data from XML columns. You can convert the XML data to the host variable
type using the XMLSERIALIZE function, or you can let the Db2 database server perform the conversion
implicitly.

The following examples show you how to declare XML host variables in each supported language. In
each table, the left column contains the declaration that you code in your application program. The right
column contains the declaration that Db2 generates.

112 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0023302.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0053603.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/java/src/tpc/imjcc_c0056290.html

Declarations of XML host variables in assembler
The following table shows assembler language declarations for some typical XML types.

Table 26. Example of assembler XML variable declarations

You declare this variable Db2 generates this variable

BLOB_XML SQL TYPE IS XML AS BLOB 1M
BLOB_XML DS 0FL4
BLOB_XML_LENGTH DS FL4
BLOB_XML_DATA DS CL65535“1” on page 113
 ORG *+(983041)

CLOB_XML SQL TYPE IS XML AS CLOB 40000K
CLOB_XML DS 0FL4
CLOB_XML_LENGTH DS FL4
CLOB_XML_DATA DS CL65535“1” on page 113
 ORG *+(40894465)

DBCLOB_XML SQL TYPE IS XML AS DBCLOB 4000K
DBCLOB_XML DS 0FL4
DBCLOB_XML_LENGTH DS FL4
DBCLOB_XML_DATA DS GL65534“2” on page 113
 ORG *+(4030466)

BLOB_XML_FILE SQL TYPE IS XML AS BLOB_FILE BLOB_XML_FILE DS 0FL4
BLOB_XML_FILE_NAME_LENGTH DS FL4
BLOB_XML_FILE_DATA_LENGTH DS FL4
BLOB_XML_FILE_FILE_OPTIONS DS FL4
BLOB_XML_FILE_NAME DS CL255

CLOB_XML_FILE SQL TYPE IS XML AS CLOB_FILE CLOB_XML_FILE DS 0FL4
CLOB_XML_FILE_NAME_LENGTH DS FL4
CLOB_XML_FILE_DATA_LENGTH DS FL4
CLOB_XML_FILE_FILE_OPTIONS DS FL4
CLOB_XML_FILE_NAME DS CL255

DBCLOB_XML_FILE SQL TYPE IS XML AS
DBCLOB_FILE DBCLOB_XML_FILE DS 0FL4

DBCLOB_XML_FILE_NAME_LENGTH DS FL4
DBCLOB_XML_FILE_DATA_LENGTH DS FL4
DBCLOB_XML_FILE_FILE_OPTIONS DS FL4
DBCLOB_XML_FILE_NAME DS CL255

Notes:

1. Because assembler language allows character declarations of no more than 65535 bytes, Db2 separates
the host language declarations for XML AS BLOB and XML AS CLOB host variables that are longer than
65535 bytes into two parts.

2. Because assembler language allows graphic declarations of no more than 65534 bytes, Db2 separates the
host language declarations for XML AS DBCLOB host variables that are longer than 65534 bytes into two
parts.

Declarations of XML host variables in C and C++
The following table shows C and C++ language declarations that are generated by the Db2 precompiler for
some typical XML types. The declarations that the Db2 coprocessor generates might be different.

Chapter 6. Db2 application programming language support for XML 113

Table 27. Examples of C language variable declarations

You declare this variable Db2 generates this variable

SQL TYPE IS XML AS BLOB (1M) blob_xml;
struct
{ unsigned long length;
 char data??(1048576??);
} blob_xml;

SQL TYPE IS XML AS CLOB(40000K) clob_xml;
struct
{ unsigned long length;
 char data??(40960000??);
} clob_xml;

SQL TYPE IS XML AS DBCLOB (4000K) dbclob_xml;
struct
{ unsigned long length;
 unsigned short data??(4096000??);
} dbclob_xml;

SQL TYPE IS XML AS BLOB_FILE blob_xml_file; struct {
unsigned long name_length;
unsigned long data_length;
unsigned long file_options;
char name??(255??);
} blob_xml_file;

SQL TYPE IS XML AS CLOB_FILE clob_xml_file; struct {
unsigned long name_length;
unsigned long data_length;
unsigned long file_options;
char name??(255??);
} clob_xml_file;

SQL TYPE IS XML AS DBCLOB_FILE dbclob_xml_file; struct {
unsigned long name_length;
unsigned long data_length;
unsigned long file_options;
char name??(255??);
} dbclob_xml_file;

Declarations of XML host variables in COBOL
The declarations that are generated for COBOL differ, depending on whether you use the Db2 precompiler
or the Db2 coprocessor.

The following table shows COBOL declarations that the Db2 precompiler generates for some typical XML
types.

Table 28. Examples of COBOL variable declarations by the Db2 precompiler

You declare this variable Db2 precompiler generates this variable

01 BLOB-XML USAGE IS
 SQL TYPE IS XML AS BLOB(1M).

01 BLOB-XML.
 02 BLOB-XML-LENGTH
 PIC 9(9) COMP.
 02 BLOB-XML-DATA.
 49 FILLER PIC X(32767).“1” on page 115
 49 FILLER PIC X(32767).
 Repeat 30 times
⋮
 49 FILLER
 PIC X(1048576-32*32767).

114 Db2 11 for z/OS: pureXML Guide

Table 28. Examples of COBOL variable declarations by the Db2 precompiler (continued)

You declare this variable Db2 precompiler generates this variable

01 CLOB-XML USAGE IS
 SQL TYPE IS XML AS CLOB(40000K).

01 CLOB-XML.
 02 CLOB-XML-LENGTH
 PIC 9(9) COMP.
 02 CLOB-XML-DATA.
 49 FILLER PIC X(32767).“1” on page 115
 49 FILLER PIC X(32767).
 Repeat 1248 times
⋮
 49 FILLER
 PIC X(40960000-1250*32767).

01 DBCLOB-XML USAGE IS
 SQL TYPE IS XML AS DBCLOB(4000K).

01 DBCLOB-XML.
 02 DBCLOB-XML-LENGTH
 PIC 9(9) COMP.
 02 DBCLOB-XML-DATA.
 49 FILLER PIC G(32767)
 USAGE DISPLAY-1.“2” on page 115
 49 FILLER PIC G(32767)
 USAGE DISPLAY-1.
 Repeat 123 times
⋮
 49 FILLER
 PIC G(4096000-125*32767)
 USAGE DISPLAY-1.

01 BLOB-XML-FILE USAGE IS SQL
 TYPE IS XML AS BLOB-FILE.

01 BLOB-XML-FILE.
 49 BLOB-XML-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
 49 BLOB-XML-FILE-DATA-LENGTH PIC S9(9) COMP-5.
 49 BLOB-XML-FILE-FILE-OPTION PIC S9(9) COMP-5.
 49 BLOB-XML-FILE-NAME PIC X(255).

01 CLOB-XML-FILE USAGE IS SQL
 TYPE IS XML AS CLOB-FILE.

01 CLOB-XML-FILE.
 49 CLOB-XML-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
 49 CLOB-XML-FILE-DATA-LENGTH PIC S9(9) COMP-5.
 49 CLOB-XML-FILE-FILE-OPTION PIC S9(9) COMP-5.
 49 CLOB-XML-FILE-NAME PIC X(255).

01 DBCLOB-XML-FILE USAGE IS SQL
 TYPE IS XML AS DBCLOB-FILE.

01 DBCLOB-XML-
FILE.
 49 DBCLOB-XML-FILE-NAME-LENGTH PIC S9(9) COMP-5
SYNC.
 49 DBCLOB-XML-FILE-DATA-LENGTH PIC S9(9)
COMP-5.
 49 DBCLOB-XML-FILE-FILE-OPTION PIC S9(9)
COMP-5.
 49 DBCLOB-XML-FILE-NAME PIC
X(255).

Notes:

1. For XML AS BLOB or XML AS CLOB host variables that are greater than 32767 bytes in length, Db2 creates
multiple host language declarations of 32767 or fewer bytes.

2. For XML AS DBCLOB host variables that are greater than 32767 double-byte characters in length, Db2
creates multiple host language declarations of 32767 or fewer double-byte characters.

Declarations of XML host variables in PL/I
The declarations that are generated for PL/I differ, depending on whether you use the Db2 precompiler or
the Db2 coprocessor.

The following table shows PL/I declarations that the Db2 precompiler generates for some typical XML
types.

Chapter 6. Db2 application programming language support for XML 115

Table 29. Examples of PL/I variable declarations

You declare this variable Db2 precompiler generates this variable

DCL BLOB_XML
 SQL TYPE IS XML AS BLOB (1M);

DCL
 1 BLOB_XML,
 2 BLOB_XML_LENGTH BIN FIXED(31),
 2 BLOB_XML_DATA,“1” on page 117
 3 BLOB_XML_DATA1 (32) CHAR(32767),
 3 BLOB_XML_DATA2 CHAR(32);

DCL CLOB_XML
 SQL TYPE IS XML AS CLOB (40000K);

DCL
 1 CLOB_XML,
 2 CLOB_XML_LENGTH BIN FIXED(31),
 2 CLOB_XML_DATA,“1” on page
117
 3 CLOB_XML_DATA1 (1250) CHAR(32767),
 3 CLOB_XML_DATA2 CHAR(1250);

DCL DBCLOB_XML
 SQL TYPE IS XML AS DBCLOB (4000K);

DCL
 1 DBCLOB_XML,
 2 DBCLOB_XML_LENGTH BIN FIXED(31),
 2 DBCLOB_XML_DATA,“2” on page
117
 3 DBCLOB_XML_DATA1 (250) GRAPHIC(16383),
 3 DBCLOB_XML_DATA2 GRAPHIC(250);

DCL BLOB_XML_FILE
 SQL TYPE IS XML AS BLOB_FILE;

DCL

 1
BLOB_XML_FILE,
 2 BLOB_XML_FILE_NAME_LENGTH BIN FIXED(31)
ALIGNED,
 2 BLOB_XML_FILE_DATA_LENGTH BIN
FIXED(31),
 2 BLOB_XML_FILE_FILE_OPTIONS BIN
FIXED(31),
 2 BLOB_XML_FILE_NAME
CHAR(255);

DCL CLOB_XML_FILE
 SQL TYPE IS XML AS CLOB_FILE;

DCL

 1
CLOB_XML_FILE,
 2 CLOB_XML_FILE_NAME_LENGTH BIN FIXED(31)
ALIGNED,
 2 CLOB_XML_FILE_DATA_LENGTH BIN
FIXED(31),
 2 CLOB_XML_FILE_FILE_OPTIONS BIN
FIXED(31),
 2 CLOB_XML_FILE_NAME
CHAR(255);

DCL DBCLOB_XML_FILE SQL TYPE IS XML AS
 DBCLOB_FILE;

DCL

 1
DBCLOB_XML_FILE,
 2 DBCLOB_XML_FILE_NAME_LENGTH BIN FIXED(31)
ALIGNED,
 2 DBCLOB_XML_FILE_DATA_LENGTH BIN
FIXED(31),
 2 DBCLOB_XML_FILE_FILE_OPTIONS BIN
FIXED(31),
 2 DBCLOB_XML_FILE_NAME
CHAR(255);

116 Db2 11 for z/OS: pureXML Guide

Table 29. Examples of PL/I variable declarations (continued)

You declare this variable Db2 precompiler generates this variable

Notes:

1. For XML AS BLOB or XML AS CLOB host variables that are greater than 32767 bytes in length, Db2 creates
host language declarations in the following way:

• If the length of the XML is greater than 32767 bytes and evenly divisible by 32767, Db2 creates an array
of 32767-byte strings. The dimension of the array is length/32767.

• If the length of the XML is greater than 32767 bytes but not evenly divisible by 32767, Db2 creates
two declarations: The first is an array of 32767 byte strings, where the dimension of the array, n, is
length/32767. The second is a character string of length length-n*32767.

2. For XML AS DBCLOB host variables that are greater than 16383 double-byte characters in length, Db2
creates host language declarations in the following way:

• If the length of the XML is greater than 16383 characters and evenly divisible by 16383, Db2 creates an
array of 16383-character strings. The dimension of the array is length/16383.

• If the length of the XML is greater than 16383 characters but not evenly divisible by 16383, Db2 creates
two declarations: The first is an array of 16383 byte strings, where the dimension of the array, m, is
length/16383. The second is a character string of length length-m*16383.

Related concepts
Insertion of rows with XML column values
To insert rows into a table that contains XML columns, you can use the SQL INSERT statement.
Retrieving XML data
You can retrieve entire XML documents from XML columns by using an SQL SELECT statement.
Alternatively, you can use SQL with XML extensions (SQL/XML) to retrieve portions of documents.
Updates of XML columns
To update entire documents in an XML column, you can use the SQL UPDATE statement. You can include
a WHERE clause when you want to update specific rows. To update portions of XML documents, use the
XMLMODIFY function with a basic XQuery updating expression.

XML column updates in embedded SQL applications
When you update or insert data into XML columns of a Db2 table, the input data must be in the textual
XML format.

The encoding of XML data can be derived from the data itself, which is known as internally encoded
data, or from external sources, which is known as externally encoded data. XML data that is sent to the
database server as binary data is treated as internally encoded data. XML data that is sent to the database
server as character data is treated as externally encoded data.

Externally encoded data can have internal encoding. That is, the data might be sent to the database
server as character data, but the data contains encoding information. Db2 does not enforce consistency
of the internal and external encoding. When the internal and external encoding information differs, the
external encoding takes precedence. However, if there is a difference between the external and internal
encoding, intervening character conversion might have occurred on the data, and there might be data
loss.

Character data in XML columns is stored in UTF-8 encoding. The database server handles conversion of
the data from its internal or external encoding to UTF-8.

The following examples demonstrate how to update XML columns in assembler, C, COBOL, and PL/I
applications. The examples use a table named MYCUSTOMER, which is a copy of the sample CUSTOMER
table.

Chapter 6. Db2 application programming language support for XML 117

Example
The following example shows an assembler program that inserts data from XML AS BLOB, XML AS
CLOB, and CLOB host variables into an XML column. The XML AS BLOB data is inserted as binary data,
so the database server honors the internal encoding. The XML AS CLOB and CLOB data is inserted as
character data, so the database server honors the external encoding.

**
* UPDATE AN XML COLUMN WITH DATA IN AN XML AS CLOB HOST VARIABLE *
**
 EXEC SQL +
 UPDATE MYCUSTOMER +
 SET INFO = :XMLBUF +
 WHERE CID = 1000
**
* UPDATE AN XML COLUMN WITH DATA IN AN XML AS BLOB HOST VARIABLE *
**
 EXEC SQL +
 UPDATE MYCUSTOMER +
 SET INFO = :XMLBLOB +
 WHERE CID = 1000
**
* UPDATE AN XML COLUMN WITH DATA IN A CLOB HOST VARIABLE. USE *
* THE XMLPARSE FUNCTION TO CONVERT THE DATA TO THE XML TYPE. *
**
 EXEC SQL +
 UPDATE MYCUSTOMER +
 SET INFO = XMLPARSE(DOCUMENT :CLOBBUF) +
 WHERE CID = 1000
…
 LTORG

* HOST VARIABLE DECLARATIONS *

XMLBUF SQL TYPE IS XML AS CLOB 10K
XMLBLOB SQL TYPE IS XML AS BLOB 10K
CLOBBUF SQL TYPE IS CLOB 10K

Example
The following example shows a C language program that inserts data from XML AS BLOB, XML AS
CLOB, and CLOB host variables into an XML column. The XML AS BLOB data is inserted as binary data,
so the database server honors the internal encoding. The XML AS CLOB and CLOB data is inserted as
character data, so the database server honors the external encoding.

/******************************/
/* Host variable declarations */
/******************************/
EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS XML AS CLOB(10K) xmlBuf;
SQL TYPE IS XML AS BLOB(10K) xmlblob;
SQL TYPE IS CLOB(10K) clobBuf;
EXEC SQL END DECLARE SECTION;
/**/
/* Update an XML column with data in an XML AS CLOB host variable */
/**/
EXEC SQL UPDATE MYCUSTOMER SET INFO = :xmlBuf where CID = 1000;
/**/
/* Update an XML column with data in an XML AS BLOB host variable */
/**/
 EXEC SQL UPDATE MYCUSTOMER SET INFO = :xmlblob where CID = 1000;
/**/
/* Update an XML column with data in a CLOB host variable. Use */
/* the XMLPARSE function to convert the data to the XML type. */
/**/
EXEC SQL UPDATE MYCUSTOMER SET INFO = XMLPARSE(DOCUMENT :clobBuf) where CID = 1000;

Example
The following example shows a COBOL program that inserts data from XML AS BLOB, XML AS CLOB,
and CLOB host variables into an XML column. The XML AS BLOB data is inserted as binary data, so
the database server honors the internal encoding. The XML AS CLOB and CLOB data is inserted as
character data, so the database server honors the external encoding.

* Host variable declarations *

118 Db2 11 for z/OS: pureXML Guide

 01 XMLBUF USAGE IS SQL TYPE IS XML as CLOB(10K).
 01 XMLBLOB USAGE IS SQL TYPE IS XML AS BLOB(10K).
 01 CLOBBUF USAGE IS SQL TYPE IS CLOB(10K).

* Update an XML column with data in an XML AS CLOB host variable *

 EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBUF where CID = 1000.

* Update an XML column with data in an XML AS BLOB host variable *

 EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBLOB where CID = 1000.

* Update an XML column with data in a CLOB host variable. Use *
* the XMLPARSE function to convert the data to the XML type. *

 EXEC SQL UPDATE MYCUSTOMER SET INFO = XMLPARSE(DOCUMENT :CLOBBUF) where CID = 1000.

Example
The following example shows a PL/I program that inserts data from XML AS BLOB, XML AS CLOB,
and CLOB host variables into an XML column. The XML AS BLOB data is inserted as binary data, so
the database server honors the internal encoding. The XML AS CLOB and CLOB data is inserted as
character data, so the database server honors the external encoding.

/******************************/
/* Host variable declarations */
/******************************/
 DCL
 XMLBUF SQL TYPE IS XML AS CLOB(10K),
 XMLBLOB SQL TYPE IS XML AS BLOB(10K),
 CLOBBUF SQL TYPE IS CLOB(10K);
/***/
/* Update an XML column with data in an XML AS CLOB host variable */
/***/
 EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBUF where CID = 1000;
/***/
/* Update an XML column with data in an XML AS BLOB host variable */
/***/
 EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBLOB where CID = 1000;
/***/
/* Update an XML column with data in a CLOB host variable. Use */
/* the XMLPARSE function to convert the data to the XML type. */
/***/
 EXEC SQL UPDATE MYCUSTOMER SET INFO = XMLPARSE(DOCUMENT :CLOBBUF) where CID = 1000;

Related concepts
Insertion of rows with XML column values
To insert rows into a table that contains XML columns, you can use the SQL INSERT statement.
Updates of XML columns
To update entire documents in an XML column, you can use the SQL UPDATE statement. You can include
a WHERE clause when you want to update specific rows. To update portions of XML documents, use the
XMLMODIFY function with a basic XQuery updating expression.

XML data retrieval in embedded SQL applications
In an embedded SQL application, if you retrieve the data into a character host variable, Db2 converts the
data from the UTF-8 encoding scheme to the application encoding scheme. If you retrieve the data into
binary host variable, Db2 does not convert the data to another encoding scheme.

The output data is in the textual XML format.

Db2 might add an XML encoding specification to the retrieved data, depending on whether you call
the XMLSERIALIZE function when you retrieve the data. If you do not call the XMLSERIALIZE function,
Db2 adds the correct XML encoding specification to the retrieved data. If you call the XMLSERIALIZE
function, Db2 adds an internal XML encoding declaration for UTF-8 encoding if you specify INCLUDING
XMLDECLARATION in the function call. When you use INCLUDING XMLDECLARATION, you need to ensure
that the retrieved data is not converted from UTF-8 encoding to another encoding.

Chapter 6. Db2 application programming language support for XML 119

The following examples demonstrate how to retrieve data from XML columns in assembler, C, COBOL,
and PL/I applications. The examples use a table named MYCUSTOMER, which is a copy of the sample
CUSTOMER table.

Example: The following example shows an assembler program that retrieves data from an XML column
into XML AS BLOB, XML AS CLOB, and CLOB host variables. The data that is retrieved into an XML AS BLOB
host variable is retrieved as binary data, so the database server generates an XML declaration with UTF-8
encoding. The data that is retrieved into an XML AS CLOB host variable is retrieved as character data, so
the database server generates an XML declaration with an internal encoding declaration that is consistent
with the external encoding. The data that is retrieved into a CLOB host variable is retrieved as character
data, so the database server generates an XML declaration with an internal encoding declaration. That
declaration might not be consistent with the external encoding.

**
* RETRIEVE XML COLUMN DATA INTO AN XML AS CLOB HOST VARIABLE *
**
 EXEC SQL +
 SELECT INFO +
 INTO :XMLBUF +
 FROM MYCUSTOMER +
 WHERE CID = 1000
**
* RETRIEVE XML COLUMN DATA INTO AN XML AS BLOB HOST VARIABLE *
**
 EXEC SQL +
 SELECT INFO +
 INTO :XMLBLOB +
 FROM MYCUSTOMER +
 WHERE CID = 1000
**
* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. *
* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE *
* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML *
* TYPE TO THE CLOB TYPE. *
**
 EXEC SQL +
 SELECT XMLSERIALIZE(INFO AS CLOB(10K)) +
 INTO :CLOBBUF +
 FROM MYCUSTOMER +
 WHERE CID = 1000
…
 LTORG

* HOST VARIABLE DECLARATIONS *

XMLBUF SQL TYPE IS XML AS CLOB 10K
XMLBLOB SQL TYPE IS XML AS BLOB 10K
CLOBBUF SQL TYPE IS CLOB 10K

Example: The following example shows a C language program that retrieves data from an XML column
into XML AS BLOB, XML AS CLOB, and CLOB host variables. The data that is retrieved into an XML AS BLOB
host variable is retrieved as binary data, so the database server generates an XML declaration with UTF-8
encoding. The data that is retrieved into an XML AS CLOB host variable is retrieved as character data, so
the database server generates an XML declaration with an internal encoding declaration that is consistent
with the external encoding. The data that is retrieved into a CLOB host variable is retrieved as character
data, so the database server generates an XML declaration with an internal encoding declaration. That
declaration might not be consistent with the external encoding.

/******************************/
/* Host variable declarations */
/******************************/
EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS XML AS CLOB(10K) xmlBuf;
SQL TYPE IS XML AS BLOB(10K) xmlBlob;
SQL TYPE IS CLOB(10K) clobBuf;
EXEC SQL END DECLARE SECTION;
/**/
/* Retrieve data from an XML column into an XML AS CLOB host variable */
/**/
EXEC SQL SELECT INFO INTO :xmlBuf from myTable where CID = 1000;
/**/
/* Retrieve data from an XML column into an XML AS BLOB host variable */
/**/

120 Db2 11 for z/OS: pureXML Guide

EXEC SQL SELECT INFO INTO :xmlBlob from myTable where CID = 1000;
/**/
/* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. */
/* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE */
/* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML */
/* TYPE TO THE CLOB TYPE. */
/**/
EXEC SQL SELECT XMLSERIALIZE(INFO AS CLOB(10K))
 INTO :clobBuf from myTable where CID = 1000;

Example: The following example shows a COBOL program that retrieves data from an XML column into
XML AS BLOB, XML AS CLOB, and CLOB host variables. The data that is retrieved into an XML AS BLOB
host variable is retrieved as binary data, so the database server generates an XML declaration with UTF-8
encoding. The data that is retrieved into an XML AS CLOB host variable is retrieved as character data, so
the database server generates an XML declaration with an internal encoding declaration that is consistent
with the external encoding. The data that is retrieved into a CLOB host variable is retrieved as character
data, so the database server generates an XML declaration with an internal encoding declaration. That
declaration might not be consistent with the external encoding.

* Host variable declarations *

 01 XMLBUF USAGE IS SQL TYPE IS XML AS CLOB(10K).
 01 XMLBLOB USAGE IS SQL TYPE IS XML AS BLOB(10K).
 01 CLOBBUF USAGE IS SQL TYPE IS CLOB(10K).
**
* Retrieve data from an XML column into an XML AS CLOB host variable *
**
 EXEC SQL SELECT INFO
 INTO :XMLBUF
 FROM MYTABLE
 WHERE CID = 1000
 END-EXEC.
**
* Retrieve data from an XML column into an XML AS BLOB host variable *
**
 EXEC SQL SELECT INFO
 INTO :XMLBLOB
 FROM MYTABLE
 WHERE CID = 1000
 END-EXEC.
**
* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. *
* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE *
* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML *
* TYPE TO THE CLOB TYPE. *
**
 EXEC SQL SELECT XMLSERIALIZE(INFO AS CLOB(10K))
 INTO :CLOBBUF
 FROM MYTABLE
 WHERE CID = 1000
 END-EXEC.

Example: The following example shows a PL/I program that retrieves data from an XML column into XML
AS BLOB, XML AS CLOB, and CLOB host variables. The data that is retrieved into an XML AS BLOB host
variable is retrieved as binary data, so the database server generates an XML declaration with UTF-8
encoding. The data that is retrieved into an XML AS CLOB host variable is retrieved as character data, so
the database server generates an XML declaration with an internal encoding declaration that is consistent
with the external encoding. The data that is retrieved into a CLOB host variable is retrieved as character
data, so the database server generates an XML declaration with an internal encoding declaration. That
declaration might not be consistent with the external encoding.

/******************************/
/* Host variable declarations */
/******************************/
 DCL
 XMLBUF SQL TYPE IS XML AS CLOB(10K),
 XMLBLOB SQL TYPE IS XML AS BLOB(10K),
 CLOBBUF SQL TYPE IS CLOB(10K);
/**/
/* Retrieve data from an XML column into an XML AS CLOB host variable */
/**/
 EXEC SQL SELECT INFO INTO :XMLBUF FROM MYTABLE WHERE CID = 1000;
/**/

Chapter 6. Db2 application programming language support for XML 121

/* Retrieve data from an XML column into an XML AS BLOB host variable */
/**/
 EXEC SQL SELECT INFO INTO :XMLBLOB FROM MYTABLE WHERE CID = 1000;
/**/
/* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. */
/* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE */
/* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML */
/* TYPE TO THE CLOB TYPE. */
/**/
 EXEC SQL SELECT XMLSERIALIZE(INFO AS CLOB(10K))
 INTO :CLOBBUF FROM MYTABLE WHERE CID = 1000;

Retrieving XML data
You can retrieve entire XML documents from XML columns by using an SQL SELECT statement.
Alternatively, you can use SQL with XML extensions (SQL/XML) to retrieve portions of documents.

XML data in ODBC applications
In Db2 tables, the XML built-in data type is used to store XML data in a column as a structured set of
nodes in a tree format.

The ODBC symbolic SQL data type SQL_XML corresponds to the Db2 XML data type. The symbolic
C data types that you can use for updating XML columns or retrieving data from XML columns
are SQL_C_BINARY, SQL_C_CHAR, SQL_C_DBCHAR or SQL_C_WCHAR. The default C data type is
SQL_C_BINARY, which is also the recommended data type because it enables the data to be manipulated
in its native format. This data type reduces conversion overhead and minimizes data loss that can result
from the conversions.

XML column updates in ODBC applications
When you update or insert data into XML columns of a Db2 table, the input data can be in textual format
or Extensible Dynamic Binary XML Db2 Client/Server Binary XML Format (binary XML format)

For XML data, when you use SQLBindParameter() or SQLSetParam() to bind parameter markers to
input data buffers, you can specify the data type of the input data buffer (fCType) as one of the following
types:

• SQL_C_BINARY
• SQL_C_BINARYXML
• SQL_C_CHAR
• SQL_C_DBCHAR
• SQL_C_WCHAR.

When you bind a data buffer that contains XML data as SQL_C_BINARY, ODBC processes the XML data as
internally encoded data. This is the preferred method because it avoids the overhead and potential data
loss of character conversion.

Important: If the XML data is encoded in an encoding scheme and CCSID other than the application
encoding scheme, you need to include internal encoding in the data and bind the data as SQL_C_BINARY
to avoid character conversion.

When you bind a data buffer that contains XML data as SQL_C_CHAR, SQL_C_DBCHAR or SQL_C_WCHAR,
ODBC processes the XML data as externally encoded data. ODBC determines the encoding of the data as
follows:

• If the fCType value is SQL_C_WCHAR, ODBC assumes that the data is encoded as UCS-2.
• If the fCType value is SQL_C_CHAR or SQL_C_DBCHAR, ODBC assumes that the data is encoded in the

application encoding scheme.

SQL_C_BINARYXML is neither internally encoded nor externally encoded. SQL_C_BINARYXML is in binary
XML format, as opposed to textual XML format, and it has no encoding.

122 Db2 11 for z/OS: pureXML Guide

If you want Db2 to do an implicit XMLPARSE on the data before storing it in an XML column, the
parameter marker data type in SQLBindParameter() or SQLSetParam() (fsqlType) must be specified
as SQL_XML.

If you do an explicit XMLPARSE on the data, the parameter marker data type in SQLBindParameter() or
SQLSetParam() (fsqlType) can be specified as any character or binary data type.

Examples
Example of inserting XML data into an XML column

The following example shows how to insert XML data into an XML column by using various C and SQL
data types.

/* Variables for input XML data */
SQLCHAR HVCHAR[32768];
SQLWCHAR HVWCHAR[32768];
/* Variables for input XML data lengths */
SQLINTEGER LEN_HVCHAR;
SQLINTEGER LEN_HVWCHAR;
/* SQL statement buffer */
SQLCHAR sqlstmt[250];
/* Return code for ODBC calls */
SQLRETURN rc = SQL_SUCCESS;
/* Prepare an INSERT statement for inserting */
/* data into an XML column. The input parameter */
/* type is SQL_XML, so DB2 does an implicit */
/* XMLPARSE. */
strcpy((char *)sqlstmt,
 "INSERT INTO MYTABLE(XMLCOL) VALUES(?)");
/* Bind input XML data with the SQL_C_CHAR type, */
/* to an SQL_XML SQL type. */
/* The data is assumed to be externally encoded, */
/* in the application encoding scheme. */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_XML,
 0, 0, HVCHAR, sizeof(HVCHAR), &LEN_HVCHAR);
/* Execute the INSERT statement */
rc = SQLExecute(hstmt);
/* Bind input XML data with the SQL_C_WCHAR type, */
/* to an SQL_XML SQL type. */
/* The data is assumed to be externally encoded, */
/* in the UCS-2 encoding scheme. */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_WCHAR, SQL_XML,
 0, 0, HVWCHAR, sizeof(HVWCHAR0, &LEN_HVWCHAR);
/* Execute the INSERT statement */
rc = SQLExecute(hstmt);
/* Prepare an INSERT statement for inserting */
/* data into an XML column. The input parameter */
/* type is SQL_CLOB, so the application must */
/* do an explicit XMLPARSE. */
strcpy((char *)sqlstmt,
 "INSERT INTO MYTABLE (XMLCOL) ");
strcat((char *)sqlstmt,
 "VALUES(XMLPARSE(DOCUMENT CAST ? AS CLOB))");
/* Bind input XML data with the SQL_C_CHAR type, */
/* to an SQL_CLOB SQL type. */
/* An explicit XMLPARSE is required for inserting */
/* character data into an XML column. */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CLOB,
 32768, 0, HVCHAR, sizeof(HVCHAR), &LEN_HVCHAR);
/* Execute the INSERT statement */
rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);

Figure 5. Example of inserting XML data into an XML column

Example of inserting binary XML data into an XML column
The following example shows how to insert binary XML data into an XML column by using the
SQL_C_BINARYXML data type.

CREATE TABLE MYTABLE (XML_COL XML);

/* Declare variables for binary XML data */
SQLCHAR HV1BINARYXML[100];
SQLINTEGER LEN_HV1BINARYXML;
SQLCHAR sqlstmt[250];
SQLRETURN rc = SQL_SUCCESS;

Chapter 6. Db2 application programming language support for XML 123

/* Assume that HV1BINARYXML contains XML data in binary format
 and LEN_HV1BINARYXML contains the length of data in bytes */

/* Prepare insert statement */
strcpy((char *)sqlstmt, "insert into mytable values(?)");
rc = SQLPrepare(hstmt, sqlstmt, SQL_NTS);

/* Bind XML_COL column as SQL_C_BINARYXML */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARYXML, SQL_XML,
 0, 0, HV1BINARYXML, sizeof(HV1BINARYXML), &LEN_HV1BINARYXML);

/* Execute insert */
rc = SQLExecute(hstmt);

XML data retrieval in ODBC applications
When you select data from XML columns in a Db2 table, the output data is in textual format or Extensible
Dynamic Binary XML Db2 Client/Server Binary XML Format (binary XML format).

For XML data, when you use SQLBindCol() to bind columns in a query result set to application variables,
you can specify the data type of the application variables (fCType) as one of the following types:

• SQL_C_BINARY
• SQL_C_BINARYXML
• SQL_C_CHAR
• SQL_C_DBCHAR
• SQL_C_WCHAR.

The data is returned as internally encoded data.

ODBC determines the encoding of the data as follows:

• If the fCType value is SQL_C_BINARY, ODBC returns the data in the UTF-8 encoding scheme.
• If the fCType value is SQL_C_BINARYXML, ODBC returns the data in binary XML format.
• If the fCType value is SQL_C_CHAR or SQL_C_DBCHAR, ODBC returns the data in the application

encoding scheme.
• If the fCType value is SQL_C_WCHAR, ODBC returns the data in the UCS-2 encoding scheme.

Db2 performs an implicit XMLSERIALIZE on the data before returning it to your application.

For applications that use the SQL_C_BINARYXML data type, set LIMITEDBLOCKFETCH to 0. Otherwise, if
you attempt to use the SQLGetData() function to retrieve XML data and have LIMITEDBLOCKFETCH set to
1, the function call fails.

Examples
Example of retrieving XML data from an XML column

The following example shows how to retrieve XML data from an XML column into application variables
with various C data types.

/* Variables for output XML data */
SQLCHAR HVBINARY[32768];
SQLCHAR HVCHAR[32768];
SQLDBCHAR HVDBCHAR[32768];
SQLWCHAR HVWCHAR[32768];
/* Variables for output XML data lengths */
SQLINTEGER LEN_HVBINARY;
SQLINTEGER LEN_HVCHAR;
SQLINTEGER LEN_HVDBCHAR;
SQLINTEGER LEN_HVWCHAR;
/* SQL statement buffer */
SQLCHAR sqlstmt[250];
/* Return code for ODBC calls */
SQLRETURN rc = SQL_SUCCESS;
/* Prepare an SELECT statement for retrieving */
/* data from XML columns. */
strcpy((char *)sqlstmt,

124 Db2 11 for z/OS: pureXML Guide

 "SELECT XMLCOL1, XMLCOL2, XMLCOL3, XMLCOL4 ");
strcat((char *)sqlstmt,
 "FROM MYTABLE");
/* Bind data for first XML column as SQL_C_BINARY. */
/* This data will be retrieved as internally */
/* encoded, in the UTF-8 encoding scheme. */
rc = SQLBindCol(hstmt, 1, SQL_C_BINARY, HVBINARY, sizeof(HVBINARY), &LEN_HVBINARY);
/* Bind data for second XML column as */
/* SQL_C_CHAR. This data will be retrieved as */
/* internally encoded, in the application encoding */
/* scheme. */
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, HVCHAR, sizeof(HVCHAR), &LEN_HVCHAR);
/* Bind data for third XML column as SQL_C_DBCHAR. */
/* This data will be retrieved as internally */
/* encoded, in the application encoding scheme. */
rc = SQLBindCol(hstmt, 3, SQL_C_DBCHAR, HVDBCHAR, sizeof(HVDBCHAR), &LEN_HVDBCHAR);
/* Bind data for fourth XML column as SQL_C_WCHAR. */
/* This data will be retrieved as internally */
/* encoded, in the UCS-2 encoding scheme. */
rc = SQLBindCol(hstmt, 4, SQL_C_WCHAR, HVWCHAR, sizeof(HVWCHAR), &LEN_HVWCHAR);
/* Execute the SELECT statement and fetch a row */
/* from the result set */
rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);
rc = SQLFetch(hstmt);

Example of retrieving binary XML data from an XML column
The following example shows how to retrieve binary XML data from an XML column into application
variables by using type SQL_C_BINARYXML.

CREATE TABLE MYTABLE (XML_COL XML);

/* Declare variables for binary XML data */
SQLCHAR HV1BINARYXML[100];
SQLINTEGER LEN_HV1BINARYXML;
SQLCHAR sqlstmt[250];
SQLRETURN rc = SQL_SUCCESS;

/* Prepare select statement */
strcpy((char *)sqlstmt, "select * from mytable");
rc = SQLPrepare(hstmt, sqlstmt, SQL_NTS);

/* Bind column data as SQL_C_BINARYXML */
rc = SQLBindCol(hstmt, 1, SQL_C_BINARYXML, sizeof(HV1BINARYXML), &LEN_HV1BINARYXML);

/* Execute select */
rc = SQLExecute(hstmt);
/* Fetch result set column as binary XML */
rc = SQLFetch(hstmt);

Data types for archiving XML documents
Use a non-XML column type to store an XML document in a Db2 table only for archiving.

When you store the data in an XML column, the Db2 database server transforms the data into an internal
format. When you retrieve the document, the retrieved data is not exactly the same as the original textual
XML document. Therefore, the XML column type is not appropriate for archiving.

The best column data type for archiving XML data is a binary data type, such as BLOB. A BLOB type does
not store the external encoding of the data, so the XML documents need to have an internal encoding
declaration that indicates the original encoding.

Related concepts
XML data encoding
The encoding of XML data can be derived from the data itself, which is known as internally encoded data,
or from external sources, which is known as externally encoded data.

Chapter 6. Db2 application programming language support for XML 125

126 Db2 11 for z/OS: pureXML Guide

Chapter 7. XML data encoding
The encoding of XML data can be derived from the data itself, which is known as internally encoded data,
or from external sources, which is known as externally encoded data.

The application data type that you use to exchange the XML data between the application and the XML
column determines how the encoding is derived.

• XML data that is in character or graphic application data types is considered to be externally encoded.
Like character and graphic data, XML data that is in these data types is considered to be encoded in:

– The application code page, if the encoding is not specified in an SQLDA
– The value that is specified by the CCSID, if a CCSID is specified in an SQLDA

• XML data that is in a binary application data type or has a bit data subtype is considered to be internally
encoded.

Externally coded XML data might contain internal encoding, such as when an XML document in a
character data type contains an encoding declaration. When you send externally encoded data to a Db2
database, the database manager ignores internal encoding.

Related concepts
Db2 application programming language support for XML
You can write applications to store XML data in Db2 database tables or retrieve XML data from tables. XML
parameters for external stored procedures or user-defined functions are not supported.

Background information on XML internal encoding
XML data in a binary application data type has internal encoding. With internal encoding, the content of
the data determines the encoding.

The Db2 database system derives the internal encoding from the document content according to the XML
standard.

Internal encoding is derived from three components:
Unicode Byte Order Mark (BOM)

A byte sequence that consists of a Unicode character code at the beginning of XML data. The BOM
indicates the byte order of the following text. The Db2 database manager recognizes a BOM only for
XML data. For XML data that is stored in a non-XML column, the database manager treats a BOM value
like any other character or binary value.

XML declaration
A special tag at the beginning of an XML document. The declaration provides specific details about the
remainder of the XML.

Encoding declaration
An optional part of the XML declaration that specifies the encoding for the characters in the
document.

The Db2 database manager uses the following procedure to determine the encoding:

1. If the data contains a Unicode BOM, the BOM determines the encoding. The following table lists the
BOM types and the resultant data encoding:

Table 30. Byte order marks and resultant document encoding

BOM type BOM value Encoding

UTF-8 X'EFBBBF' UTF-8

UTF-16 Big Endian X'FEFF' UTF-16

© Copyright IBM Corp. 2007, 2021 127

Table 30. Byte order marks and resultant document encoding (continued)

BOM type BOM value Encoding

UTF-16 Little Endian X'FFFE' UTF-16

2. If the data contains an XML declaration, the encoding depends on whether there is an encoding
declaration:

• If there is an encoding declaration, the encoding is the value of the encoding attribute. For example,
the encoding is EUC-JP for XML data with the following XML declaration:

<?xml version="1.0" encoding="EUC-JP"?>

• If there is an encoding declaration and a BOM, the encoding declaration must match the encoding
from the BOM. Otherwise, an error occurs.

• If there is no encoding declaration and no BOM, the database manager determines the encoding
from the encoding of the XML declaration:

– If the XML declaration is in single-byte ASCII characters, the encoding of the document is UTF-8.
– If the XML declaration is in double-byte ASCII characters, the encoding of the document is

UTF-16.
3. If there is no XML declaration and no BOM, the encoding of the document is UTF-8.

Related information
XML encoding considerations
Following some guidelines helps you to avoid encoding issues when you store or retrieve XML data in Db2
tables.
XML encoding scenarios
Internal or external encoding and implicit or explicit XML serialization can affect data conversion during
storage and retrieval of XML values in Db2 tables.

XML encoding considerations
Following some guidelines helps you to avoid encoding issues when you store or retrieve XML data in Db2
tables.
Related concepts
Background information on XML internal encoding
XML data in a binary application data type has internal encoding. With internal encoding, the content of
the data determines the encoding.
Related information
XML encoding scenarios
Internal or external encoding and implicit or explicit XML serialization can affect data conversion during
storage and retrieval of XML values in Db2 tables.

Encoding considerations for input of XML data to a Db2 table
When you update XML data in a Db2 table, you need to avoid data loss.

When you store XML data in a Db2 table, observe the following rules:

• For externally encoded XML data (data that is sent to the database server using character data types),
any internally encoded declaration needs to match the external encoding.

• For internally encoded XML data (data that is sent to the database server using binary data types), the
application must ensure that the data contains accurate encoding information.

Related concepts
Background information on XML internal encoding

128 Db2 11 for z/OS: pureXML Guide

XML data in a binary application data type has internal encoding. With internal encoding, the content of
the data determines the encoding.
Related reference
Mappings of encoding names to effective CCSIDs for stored XML data
Each encoding name maps to a specific CCSID.
Related information
XML encoding scenarios
Internal or external encoding and implicit or explicit XML serialization can affect data conversion during
storage and retrieval of XML values in Db2 tables.

Encoding considerations for retrieval of XML data from a Db2 table
When you retrieve XML data from a Db2 table, you need to avoid data loss and truncation.

Data loss can occur when characters in the source data cannot be represented in the encoding of the
target data. Truncation can occur when:

• Conversion to the target data type results in expansion of the data.
• The application host variable length is not set or is set too small.

Because DESCRIBE does not return a length for XML columns, applications that use an SQLDA must
set a length in the SQLDA that reflects the amount of application storage available for each application
variable. Applications can provide enough storage to hold the largest retrieved documents, or use
FETCH CONTINUE to retrieve large XML documents in pieces.

Data loss is less of a problem for Java applications than for other types of applications because Java
string data types use Unicode UTF-16 or UCS2 encoding. Truncation is possible because expansion can
occur when UTF-8 characters are converted to UTF-16 or UCS-2 encoding.

Related concepts
Background information on XML internal encoding
XML data in a binary application data type has internal encoding. With internal encoding, the content of
the data determines the encoding.
Related reference
Mappings of CCSIDs to encoding names for textual XML output data
As part of an implicit or explicit XMLSERIALIZE operation, Db2 might add an encoding declaration at the
beginning of textual XML output data.
Related information
XML encoding scenarios
Internal or external encoding and implicit or explicit XML serialization can affect data conversion during
storage and retrieval of XML values in Db2 tables.

XML data encoding in JDBC and SQLJ applications
In general, Java applications have fewer XML encoding issues than Db2 ODBC or embedded SQL
applications because the application code page is always Unicode.

Although the encoding considerations for internally encoded XML data are the same for all applications,
the situation is simplified for externally encoded data in Java applications.

General recommendations for input of XML data in Java applications
• If the input data is in a file, read the data in as a binary stream (setBinaryStream) so that the

database manager processes it as internally encoded data.
• If the input data is in a Java application variable, your choice of application variable type determines

whether the Db2 database manager uses any internal encoding. If you input the data as a character
type (for example, setString), the database manager converts the data from UTF-16 (the application
code page) to UTF-8 before parsing and storing it.

Chapter 7. XML data encoding 129

General recommendations for output of XML data in Java applications
• If you output XML data to a file as non-binary data, you should add XML internal encoding to the output

data.

The encoding for the file system might not be Unicode, so string data can undergo conversion when it is
stored in the file. If you write data to a file as binary data, conversion does not occur.

For Java applications, the database server does not add an explicit declaration for an implicit XML
serialize operation. If you cast the output data as the com.ibm.db2.jcc.DB2Xml type, and invoke
one of the getDB2Xmlxxx methods, the JDBC driver adds an encoding declaration, as shown in the
following table.

getDB2Xmlxxx Encoding in declaration

getDB2XmlString ISO-10646-UCS-2

getDB2XmlBytes(String targetEncoding) Encoding specified by targetEncoding

getDB2XmlAsciiStream US-ASCII

getDB2XmlCharacterStream ISO-10646-UCS-2

getDB2XmlBinaryStream(String
targetEncoding)

Encoding specified by targetEncoding

For an explicit XMLSERIALIZE function with INCLUDING XMLDECLARATION, the database server adds
encoding, and the JDBC driver does not modify it. The explicit encoding that the database server adds is
UTF-8 encoding. Depending on how the value is retrieved by the application, the actual encoding of the
data might not match the explicit internal encoding.

• If the application sends the output data to an XML parser, you should retrieve the data in a binary
application variable, with UTF-8, UCS-2, or UTF-16 encoding.

Related information
XML data in Java applications
In Java applications, you can store XML data in Db2 databases or retrieve XML data from Db2 databases
by using JDBC or SQLJ.

XML encoding scenarios
Internal or external encoding and implicit or explicit XML serialization can affect data conversion during
storage and retrieval of XML values in Db2 tables.
Related concepts
Background information on XML internal encoding
XML data in a binary application data type has internal encoding. With internal encoding, the content of
the data determines the encoding.
Related information
XML encoding considerations
Following some guidelines helps you to avoid encoding issues when you store or retrieve XML data in Db2
tables.

Encoding scenarios for input of internally encoded XML data to a Db2 table
Internal encoding can affect data conversion and truncation during input of XML data to an XML column.

In general, use of a binary application data type minimizes code page conversion problems during input to
a Db2 table. The following examples demonstrate the effects of internal encoding during input.

130 Db2 11 for z/OS: pureXML Guide

Scenario 1
Encoding source Value

Data encoding UTF-8 Unicode input data, with or without a UTF-8 BOM or XML encoding declaration

Application data
type

Binary

Application code
page

Not applicable

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES
 (XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))
INSERT INTO T1 (XMLCOL) VALUES (XMLPARSE(DOCUMENT :HV))

Character conversion: None.

Data loss: None.

Truncation: None.

Scenario 2
Encoding source Value

Data encoding UTF-16 Unicode input data containing a UTF-16 BOM or XML encoding declaration

Application data
type

Binary

Application code
page

Not applicable

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES
 (XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))
INSERT INTO T1 (XMLCOL) VALUES (XMLPARSE(DOCUMENT :HV))

Character conversion: The Db2 database system converts the data from UTF-16 to UTF-8 when it
performs the XML parse for storage in the XML column.

Data loss or truncation: No data loss occurs. Truncation can occur during conversion from UTF-16 to
UTF-8, due to expansion.

Scenario 3
Encoding source Value

Data encoding ISO-8859-1 input data containing an XML encoding declaration

Application data
type

Binary

Application code
page

Not applicable

Chapter 7. XML data encoding 131

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES
 (XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))
INSERT INTO T1 VALUES (XMLPARSE(DOCUMENT :HV))

Character conversion: The Db2 database system converts the data from CCSID 819 to UTF-8 when it
performs the XML parse for storage in the XML column.

Data loss: None.

Truncation: None.

Scenario 4
Encoding source Value

Data encoding Shift_JIS input data containing an XML encoding declaration

Application data
type

Binary

Application code
page

Not applicable

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES
 (XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))
INSERT INTO T1 VALUES (XMLPARSE(DOCUMENT :HV))

Character conversion: The Db2 database system converts the data from CCSID 943 to UTF-8 when it
performs the XML parse for storage in the XML column.

Data loss: None.

Truncation: None.

Related reference
Mappings of encoding names to effective CCSIDs for stored XML data
Each encoding name maps to a specific CCSID.
Related information
XML encoding considerations
Following some guidelines helps you to avoid encoding issues when you store or retrieve XML data in Db2
tables.

Encoding scenarios for input of externally encoded XML data to a database
In general, when you use a character application data type, problems with code page conversion do not
occur during input to a database.

The following examples demonstrate how external encoding affects data conversion and truncation
during input of XML data to an XML column.

Only scenario 1 and scenario 2 apply to Java and .NET applications, because the application code page for
Java and .NET applications is always Unicode.

132 Db2 11 for z/OS: pureXML Guide

Scenario 1
Encoding source Value

Data encoding UTF-8 Unicode input data, with or without an appropriate encoding declaration or
BOM

Application data
type

Character

Application code
page

1208 (UTF-8)

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES
 (XMLPARSE(DOCUMENT CAST(? AS CLOB) PRESERVE WHITESPACE))
INSERT INTO T1 (XMLCOL) VALUES (XMLPARSE(DOCUMENT :HV))

Character conversion: None.

Data loss: None.

Truncation: None.

Scenario 2
Encoding source Value

Data encoding UTF-16 Unicode input data, with or without an appropriate encoding declaration or
BOM

Application data
type

Graphic

Application code
page

Any SBCS code page or CCSID 1208

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES
 (XMLPARSE(DOCUMENT CAST(? AS DBCLOB) PRESERVE WHITESPACE))
INSERT INTO T1 (XMLCOL) VALUES (XMLPARSE(DOCUMENT :HV))

Character conversion: The Db2 database system converts the data from UTF-16 to UTF-8 when it
performs the XML parse for storage in the XML column.

Data loss: None.

Truncation: Truncation can occur during conversion from UTF-16 to UTF-8, due to expansion.

Scenario 3
Encoding source Value

Data encoding ISO-8859-1 input data, with or without an appropriate encoding declaration

Application data
type

Character

Application code
page

819

Chapter 7. XML data encoding 133

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES
 (XMLPARSE(DOCUMENT CAST(? AS CLOB) PRESERVE WHITESPACE))
INSERT INTO T1 (XMLCOL) VALUES (XMLPARSE(DOCUMENT :HV))

Character conversion: The Db2 database system converts the data from CCSID 819 to UTF-8 when it
performs the XML parse for storage in the XML column.

Data loss: None.

Truncation: None.

Scenario 4
Encoding source Value

Data encoding Shift_JIS input data, with or without an appropriate encoding declaration

Application data
type

Graphic

Application code
page

943

Example input statements:

INSERT INTO T1 VALUES (?)
INSERT INTO T1 VALUES
 (XMLPARSE(DOCUMENT CAST(? AS DBCLOB)))
INSERT INTO T1 VALUES (XMLPARSE(DOCUMENT :HV))

Character conversion: The Db2 database system converts the data from CCSID 943 to UTF-8 when it
performs the XML parse for storage in the XML column.

Data loss: None.

Truncation: None.

Related reference
Mappings of encoding names to effective CCSIDs for stored XML data
Each encoding name maps to a specific CCSID.
Related information
XML encoding considerations
Following some guidelines helps you to avoid encoding issues when you store or retrieve XML data in Db2
tables.

Encoding scenarios for retrieval of XML data with implicit serialization
The target encoding and application code page can affect data conversion, truncation due to expansion,
and internal encoding during XML data retrieval with implicit serialization.

The following examples demonstrate these interactions.

Only scenario 1 and scenario 2 apply to Java applications, because the application code page for Java
applications is always Unicode. In general, code page conversion is not a problem for Java applications.

Scenario 1
Encoding source Value

Target data
encoding

UTF-8 Unicode

134 Db2 11 for z/OS: pureXML Guide

Encoding source Value

Target application
data type

Binary

Application code
page

Not applicable

Example output statements:

SELECT XMLCOL FROM T1

Character conversion: None.

Data loss: None.

Truncation due to expansion: None.

Internal encoding in the textual XML data: For applications other than Java applications, the data is
prefixed by the following XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>

For Java applications, no encoding declaration is added, unless you cast the data as the
com.ibm.db2.jcc.DB2Xml type, and use a getDB2Xmlxxx method to retrieve the data. The
declaration that is added depends on the getDB2Xmlxxx that you use.

Scenario 2
Encoding source Value

Target data
encoding

UTF-16 Unicode

Target application
data type

Graphic

Application code
page

CCSID 1208

Example output statements:

SELECT XMLCOL FROM T1

Character conversion: Data is converted from UTF-8 to UTF-16.

Data loss: None.

Truncation due to expansion: Truncation can occur during conversion from UTF-8 to UTF-16, due to
expansion.

Internal encoding in the textual XML data: For applications other than Java applications, the data is
prefixed by a UTF-16 Byte Order Mark (BOM) and the following XML declaration:

<?xml version="1.0" encoding="UTF-16" ?>

For Java applications, no encoding declaration is added, unless you cast the data as the
com.ibm.db2.jcc.DB2Xml type, and use a getDB2Xmlxxx method to retrieve the data. The
declaration that is added depends on the getDB2Xmlxxx that you use.

Chapter 7. XML data encoding 135

Scenario 3
Encoding source Value

Target data
encoding

ISO-8859-1 data

Target application
data type

Character

Application code
page

819

Example output statements:

SELECT XMLCOL FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 819.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in CCSID 819. The Db2
database system generates an error.

Truncation due to expansion: None.

Internal encoding in the textual XML data: The data is prefixed by the following XML declaration:

<?xml version="1.0" encoding="ISO-8859-1" ?>

Scenario 4
Encoding source Value

Target data
encoding

Windows-31J data (superset of Shift_JIS)

Target application
data type

Graphic

Application code
page

943

Example output statements:

SELECT XMLCOL FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 943.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in CCSID 943. The Db2
database system generates an error.

Truncation due to expansion: Truncation can occur during conversion from UTF-8 to CCSID 943 due to
expansion.

Internal encoding in the textual XML data: The data is prefixed by the following XML declaration:

<?xml version="1.0" encoding="Windows-31J" ?>

Related concepts
Encoding considerations for retrieval of XML data from a Db2 table
When you retrieve XML data from a Db2 table, you need to avoid data loss and truncation.
Related reference
Mappings of CCSIDs to encoding names for textual XML output data

136 Db2 11 for z/OS: pureXML Guide

As part of an implicit or explicit XMLSERIALIZE operation, Db2 might add an encoding declaration at the
beginning of textual XML output data.

Encoding scenarios for retrieval of XML data with explicit XMLSERIALIZE
The target encoding scheme and application code page can affect data conversion, truncation, and
internal encoding during XML data retrieval with an explicit XMLSERIALIZE invocation.

The following examples demonstrate these interactions.

Data loss does not occur during conversion of the XML data to the type that is specified in the
XMLSERIALIZE function because the input and output data is Unicode data. Data loss can occur during
conversion of the result of the XMLSERIALIZE operation to the application data type. This data loss
results in an SQL warning.

Truncation can occur at two points during data retrieval with an explicit XMLSERIALIZE:

• During conversion to the type that is specified in the XMLSERIALIZE function

This truncation can occur because the size that you specify in the XMLSERIALIZE function for the output
data type is too small. This truncation results in an SQL error.

• During conversion of the result of the XMLSERIALIZE operation to the application data type.

This truncation can occur because the size that you specify for the host variable is too small. This
truncation results in an SQL warning.

The following examples discuss only truncation that occurs because the size of a document increases
during conversion to the output encoding.

Only scenario 1 and scenario 2 apply to Java applications, because the application code page for Java
applications is always Unicode.

Scenario 1
Encoding source Value

Target data
encoding

UTF-8 Unicode

Target application
data type

Binary

Application code
page

Not applicable

Example output statements:

SELECT XMLSERIALIZE(XMLCOL AS BLOB(1M) INCLUDING XMLDECLARATION) FROM T1

Character conversion: None.

Data loss: None.

Truncation due to expansion: None.

Internal encoding in the textual XML data: The data is prefixed by the following XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>

Chapter 7. XML data encoding 137

Scenario 2
Encoding source Value

Target data
encoding

UTF-16 Unicode

Target application
data type

Graphic

Application code
page

CCSID 1208

Example output statements:

SELECT XMLSERIALIZE(XMLCOL AS DBCLOB(1M) EXCLUDING XMLDECLARATION) FROM T1

Character conversion: Data is converted from UTF-8 to UTF-16.

Data loss: None.

Truncation due to expansion: Truncation can occur during conversion from UTF-8 to UTF-16, due to
expansion.

Internal encoding in the textual XML data: None, because EXCLUDING XMLDECLARATION is specified.
If INCLUDING XMLDECLARATION is specified, the internal encoding indicates UTF-8 instead of UTF-16.
This can result in XML data that cannot be parsed by application processes that rely on the encoding
name.

Scenario 3
Encoding source Value

Target data
encoding

ISO-8859-1 data

Target application
data type

Character

Application code
page

819

Example output statements:

SELECT XMLSERIALIZE(XMLCOL AS CLOB(1M) EXCLUDING XMLDECLARATION) FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 819.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in CCSID 819. If a character
cannot be represented in CCSID 819, the Db2 database manager inserts a substitution character in the
output and issues a warning.

Truncation due to expansion: None.

Internal encoding in the textual XML data: None, because EXCLUDING XMLDECLARATION is specified.
If INCLUDING XMLDECLARATION is specified, the database manager adds internal encoding for UTF-8
instead of ISO-8859-1. This can result in XML data that cannot be parsed by application processes that
rely on the encoding name.

138 Db2 11 for z/OS: pureXML Guide

Scenario 4
Encoding source Value

Target data
encoding

Windows-31J data (superset of Shift_JIS)

Target application
data type

Graphic

Application code
page

943

Example output statements:

SELECT XMLSERIALIZE(XMLCOL AS CLOB(1M) EXCLUDING XMLDECLARATION) FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 943.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in CCSID 943. If a character
cannot be represented in CCSID 943, the database manager inserts a substitution character in the output
and issues a warning.

Truncation due to expansion: Truncation can occur during conversion from UTF-8 to CCSID 943 due to
expansion.

Internal encoding in the textual XML data: None, because EXCLUDING XMLDECLARATION is specified.
If INCLUDING XMLDECLARATION is specified, the internal encoding indicates UTF-8 instead of
Windows-31J. This can result in XML data that cannot be parsed by application processes that rely on the
encoding name.

Mappings of encoding names to effective CCSIDs for stored XML
data

Each encoding name maps to a specific CCSID.

Db2 examines data that is in a binary application variable or an internally encoded XML type to determine
the encoding before storing the data in an XML column. If the data has an encoding declaration, Db2 maps
the encoding name to a CCSID.

The following table lists these mappings. If an encoding name is not in that table, Db2 returns an error.

The normalized encoding name in the first column of the following table is the result of converting the
encoding name to uppercase, and stripping out all hyphens, plus signs, underscores, colons, periods,
and spaces. For example, ISO88591 is the normalized encoding name for ISO 8859-1, ISO-8859-1, and
iso-8859-1.

Table 31. Encoding names and effective CCSIDs

Normalized encoding name CCSID

437 437

646 367

813 813

819 819

850 850

852 852

855 855

Chapter 7. XML data encoding 139

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

857 857

862 862

863 863

866 866

869 869

885913 901

885915 923

88591 819

88592 912

88595 915

88597 813

88598 62210

88599 920

904 904

912 912

915 915

916 916

920 920

923 923

ANSI1251 1251

ANSIX341968 367

ANSIX341986 367

ARABIC 1089

ASCII7 367

ASCII 367

ASMO708 1089

BIG5 950

CCSID00858 858

CCSID00924 924

CCSID01140 1140

CCSID01141 1141

CCSID01142 1142

CCSID01143 1143

CCSID01144 1144

140 Db2 11 for z/OS: pureXML Guide

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

CCSID01145 1145

CCSID01146 1146

CCSID01147 1147

CCSID01148 1148

CCSID01149 1149

CP00858 858

CP00924 924

CP01140 1140

CP01141 1141

CP01142 1142

CP01143 1143

CP01144 1144

CP01145 1145

CP01146 1146

CP01147 1147

CP01148 1148

CP01149 1149

CP037 37

CP1026 1026

CP1140 1140

CP1141 1141

CP1142 1142

CP1143 1143

CP1144 1144

CP1145 1145

CP1146 1146

CP1147 1147

CP1148 1148

CP1149 1149

CP1250 1250

CP1251 1251

CP1252 1252

CP1253 1253

CP1254 1254

Chapter 7. XML data encoding 141

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

CP1255 1255

CP1256 1256

CP1257 1257

CP1258 1258

CP1363 1363

CP1383 1383

CP1386 1386

CP273 273

CP277 277

CP278 278

CP280 280

CP284 284

CP285 285

CP297 297

CP33722 954

CP33722C 954

CP367 367

CP420 420

CP423 423

CP424 424

CP437 437

CP500 500

CP5346 5346

CP5347 5347

CP5348 5348

CP5349 5349

CP5350 5350

CP5353 5353

CP813 813

CP819 819

CP838 838

CP850 850

CP852 852

CP855 855

142 Db2 11 for z/OS: pureXML Guide

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

CP857 857

CP858 858

CP862 862

CP863 863

CP864 864

CP866 866

CP869 869

CP870 870

CP871 871

CP874 874

CP904 904

CP912 912

CP915 915

CP916 916

CP920 920

CP921 921

CP922 922

CP923 923

CP936 1386

CP943 943

CP943C 943

CP949 970

CP950 950

CP964 964

CP970 970

CPGR 869

CSASCII 367

CSBIG5 950

CSEBCDICCAFR 500

CSEBCDICDKNO 277

CSEBCDICES 284

CSEBCDICFISE 278

CSEBCDICFR 297

CSEBCDICIT 280

Chapter 7. XML data encoding 143

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

CSEBCDICPT 37

CSEBCDICUK 285

CSEBCDICUS 37

CSEUCKR 970

CSEUCPKDFMTJAPANESE 954

CSGB2312 1383

CSHPROMAN8 1051

CSIBM037 37

CSIBM1026 1026

CSIBM273 273

CSIBM277 277

CSIBM278 278

CSIBM280 280

CSIBM284 284

CSIBM285 285

CSIBM297 297

CSIBM420 420

CSIBM423 423

CSIBM424 424

CSIBM500 500

CSIBM855 855

CSIBM857 857

CSIBM863 863

CSIBM864 864

CSIBM866 866

CSIBM869 869

CSIBM870 870

CSIBM871 871

CSIBM904 904

CSIBMEBCDICATDE 273

CSIBMTHAI 838

CSISO128T101G2 920

CSISO146SERBIAN 915

CSISO147MACEDONIAN 915

144 Db2 11 for z/OS: pureXML Guide

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

CSISO2INTLREFVERSION 367

CSISO646BASIC1983 367

CSISO88596I 1089

CSISO88598I 916

CSISOLATIN0 923

CSISOLATIN1 819

CSISOLATIN2 912

CSISOLATIN5 920

CSISOLATIN9 923

CSISOLATINARABIC 1089

CSISOLATINCYRILLIC 915

CSISOLATINGREEK 813

CSISOLATINHEBREW 62210

CSKOI8R 878

CSKSC56011987 970

CSMACINTOSH 1275

CSMICROSOFTPUBLISHING 1004

CSPC850MULTILINGUAL 850

CSPC862LATINHEBREW 862

CSPC8CODEPAGE437 437

CSPCP852 852

CSSHIFTJIS 943

CSUCS4 1236

CSUNICODE11 1204

CSUNICODE 1204

CSUNICODEASCII 1204

CSUNICODELATIN1 1204

CSVISCII 1129

CSWINDOWS31J 943

CYRILLIC 915

DEFAULT 367

EBCDICATDE 273

EBCDICCAFR 500

EBCDICCPAR1 420

Chapter 7. XML data encoding 145

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

EBCDICCPBE 500

EBCDICCPCA 37

EBCDICCPCH 500

EBCDICCPDK 277

EBCDICCPES 284

EBCDICCPFI 278

EBCDICCPFR 297

EBCDICCPGB 285

EBCDICCPGR 423

EBCDICCPHE 424

EBCDICCPIS 871

EBCDICCPIT 280

EBCDICCPNL 37

EBCDICCPNO 277

EBCDICCPROECE 870

EBCDICCPSE 278

EBCDICCPUS 37

EBCDICCPWT 37

EBCDICCPYU 870

EBCDICDE273EURO 1141

EBCDICDK277EURO 1142

EBCDICDKNO 277

EBCDICES284EURO 1145

EBCDICES 284

EBCDICFI278EURO 1143

EBCDICFISE 278

EBCDICFR297EURO 1147

EBCDICFR 297

EBCDICGB285EURO 1146

EBCDICINTERNATIONAL500EURO 1148

EBCDICIS871EURO 1149

EBCDICIT280EURO 1144

EBCDICIT 280

EBCDICLATIN9EURO 924

146 Db2 11 for z/OS: pureXML Guide

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

EBCDICNO277EURO 1142

EBCDICPT 37

EBCDICSE278EURO 1143

EBCDICUK 285

EBCDICUS37EURO 1140

EBCDICUS 37

ECMA114 1089

ECMA118 813

ELOT928 813

EUCCN 1383

EUCJP 954

EUCKR 970

EUCTW 964

EXTENDEDUNIXCODEPACKEDFORMATFORJAPANESE 954

GB18030 1392

GB2312 1383

GBK 1386

GREEK8 813

GREEK 813

HEBREW 62210

HPROMAN8 1051

IBM00858 858

IBM00924 924

IBM01140 1140

IBM01141 1141

IBM01142 1142

IBM01143 1143

IBM01144 1144

IBM01145 1145

IBM01146 1146

IBM01147 1147

IBM01148 1148

IBM01149 1149

IBM01153 1153

Chapter 7. XML data encoding 147

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

IBM01155 1155

IBM01160 1160

IBM037 37

IBM1026 1026

IBM1043 1043

IBM1047 1047

IBM1252 1252

IBM273 273

IBM277 277

IBM278 278

IBM280 280

IBM284 284

IBM285 285

IBM297 297

IBM367 367

IBM420 420

IBM423 423

IBM424 424

IBM437 437

IBM500 500

IBM808 808

IBM813 813

IBM819 819

IBM850 850

IBM852 852

IBM855 855

IBM857 857

IBM862 862

IBM863 863

IBM864 864

IBM866 866

IBM867 867

IBM869 869

IBM870 870

148 Db2 11 for z/OS: pureXML Guide

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

IBM871 871

IBM872 872

IBM902 902

IBM904 904

IBM912 912

IBM915 915

IBM916 916

IBM920 920

IBM921 921

IBM922 922

IBM923 923

IBMTHAI 838

IRV 367

ISO10646 1204

ISO10646UCS2 1200

ISO10646UCS4 1232

ISO10646UCSBASIC 1204

ISO10646UNICODELATIN1 1204

ISO646BASIC1983 367

ISO646IRV1983 367

ISO646IRV1991 367

ISO646US 367

ISO885911987 819

ISO885913 901

ISO885915 923

ISO885915FDIS 923

ISO88591 819

ISO885921987 912

ISO88592 912

ISO885951988 915

ISO88595 915

ISO885961987 1089

ISO88596 1089

ISO88596I 1089

Chapter 7. XML data encoding 149

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

ISO885971987 813

ISO88597 813

ISO885981988 62210

ISO88598 62210

ISO88598I 916

ISO885991989 920

ISO88599 920

ISOIR100 819

ISOIR101 912

ISOIR126 813

ISOIR127 1089

ISOIR128 920

ISOIR138 62210

ISOIR144 915

ISOIR146 915

ISOIR147 915

ISOIR148 920

ISOIR149 970

ISOIR2 367

ISOIR6 367

JUSIB1003MAC 915

JUSIB1003SERB 915

KOI8 878

KOI8R 878

KOI8U 1168

KOREAN 970

KSC56011987 970

KSC56011989 970

KSC5601 970

L1 819

L2 912

L5 920

L9 923

LATIN0 923

150 Db2 11 for z/OS: pureXML Guide

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

LATIN1 819

LATIN2 912

LATIN5 920

LATIN9 923

MAC 1275

MACEDONIAN 915

MACINTOSH 1275

MICROSOFTPUBLISHING 1004

MS1386 1386

MS932 943

MS936 1386

MS949 970

MSKANJI 943

PCMULTILINGUAL850EURO 858

R8 1051

REF 367

ROMAN8 1051

SERBIAN 915

SHIFTJIS 943

SJIS 943

SUNEUGREEK 813

T101G2 920

TIS20 874

TIS620 874

UNICODE11 1204

UNICODE11UTF8 1208

UNICODEBIGUNMARKED 1200

UNICODELITTLEUNMARKED 1202

US 367

USASCII 367

UTF16 1204

UTF16BE 1200

UTF16LE 1202

UTF32 1236

Chapter 7. XML data encoding 151

Table 31. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

UTF32BE 1232

UTF32LE 1234

UTF8 1208

VISCII 1129

WINDOWS1250 5346

WINDOWS1251 5347

WINDOWS1252 5348

WINDOWS1253 5349

WINDOWS1254 5350

WINDOWS1255 5351

WINDOWS1256 5352

WINDOWS1257 5353

WINDOWS1258 5354

WINDOWS28598 62210

WINDOWS31J 943

WINDOWS936 1386

XEUCTW 964

XMSWIN936 1386

XUTF16BE 1200

XUTF16LE 1202

XWINDOWS949 970

Mappings of CCSIDs to encoding names for textual XML output
data

As part of an implicit or explicit XMLSERIALIZE operation, Db2 might add an encoding declaration at the
beginning of textual XML output data.

The encoding declaration has the following form:

<?xml version="1.0" encoding="encoding-name"?>

In general, the character set identifier in the encoding declaration describes the encoding of the
characters in the output string. For example, when XML data is serialized to the CCSID that corresponds
to the target application data type, the encoding declaration describes the target application variable
CCSID. An exception is the case where the application performs an explicit XMLSERIALIZE function
with INCLUDING XMLDECLARATION. When you specify INCLUDING XMLDECLARATION, the database
manager generates an encoding declaration for UTF-8. If the target data type is a CLOB or DBCLOB type,
additional code page conversion might occur, which can make the encoding information inaccurate. If the
data is further parsed in the application, data corruption can result.

Where possible, Db2 chooses the IANA registry name for the CCSID, as prescribed by the XML standard.

152 Db2 11 for z/OS: pureXML Guide

If an application has a target CCSID that is not in the following list, Db2 generates an encoding name as
follows:

• If the CCSID has one to three digits, the generated encoding name is IBMnnn, where nnn is the CCSID,
which is left-padded with zeroes for a one-digit or two-digit CCSID.

• If the CCSID has four to five digits, the generated encoding name is IBMnnnnn, where nnnnn is the
CCSID, which is left-padded with a zero for a four-digit CCSID.

Some parsers might not be able to parse retrieved documents that have the generated encoding names.

Table 32. CCSIDs and corresponding encoding names

CCSID Encoding name

37 IBM037

273 IBM273

277 IBM277

278 IBM278

280 IBM280

284 IBM284

285 IBM285

297 IBM297

367 US-ASCII

420 IBM420

423 IBM423

424 IBM424

437 IBM437

500 IBM500

808 IBM808

813 ISO-8859-7

819 ISO-8859-1

838 IBM-Thai

850 IBM850

852 IBM852

855 IBM855

857 IBM857

858 IBM00858

862 IBM862

863 IBM863

864 IBM864

866 IBM866

867 IBM867

869 IBM869

Chapter 7. XML data encoding 153

Table 32. CCSIDs and corresponding encoding names (continued)

CCSID Encoding name

870 IBM870

871 IBM871

872 IBM872

874 TIS-620

878 KOI8-R

901 ISO-8859-13

902 IBM902

904 IBM904

912 ISO-8859-2

915 ISO-8859-5

916 ISO-8859-8-I

920 ISO-8859-9

921 ISO-8859-13

922 IBM922

923 ISO-8859-15

924 IBM00924

932 Shift_JIS

943 Windows-31J

949 EUC-KR

950 Big5

954 EUC-JP

964 EUC-TW

970 EUC-KR

1004 Microsoft-Publish

1026 IBM1026

1043 IBM1043

1047 IBM1047

1051 hp-roman8

1089 ISO-8859-6

1129 VISCII

1140 IBM01140

1141 IBM01141

1142 IBM01142

1143 IBM01143

154 Db2 11 for z/OS: pureXML Guide

Table 32. CCSIDs and corresponding encoding names (continued)

CCSID Encoding name

1144 IBM01144

1145 IBM01145

1146 IBM01146

1147 IBM01147

1148 IBM01148

1149 IBM01149

1153 IBM01153

1155 IBM01155

1160 IBM-Thai

1161 TIS-620

1162 TIS-620

1163 VISCII

1168 KOI8-U

1200 UTF-16

1202 UTF-16

1204 UTF-16

1208 UTF-8

1232 UTF-32

1234 UTF-32

1236 UTF-32

1250 windows-1250

1251 windows-1251

1252 windows-1252

1253 windows-1253

1254 windows-1254

1255 windows-1255

1256 windows-1256

1257 windows-1257

1258 windows-1258

1275 MACINTOSH

1363 KSC_5601

1370 Big5

1381 GB2312

1383 GB2312

Chapter 7. XML data encoding 155

Table 32. CCSIDs and corresponding encoding names (continued)

CCSID Encoding name

1386 GBK

1392 GB18030

4909 ISO-8859-7

5039 Shift_JIS

5346 windows-1250

5347 windows-1251

5348 windows-1252

5349 windows-1253

5350 windows-1254

5351 windows-1255

5352 windows-1256

5353 windows-1257

5354 windows-1258

5488 GB18030

8612 IBM420

8616 IBM424

9005 ISO-8859-7

12712 IBM424

13488 UTF-16

13490 UTF-16

16840 IBM420

17248 IBM864

17584 UTF-16

17586 UTF-16

62209 IBM862

62210 ISO-8859-8

62211 IBM424

62213 IBM862

62215 ISO-8859-8

62218 IBM864

62221 IBM862

62222 ISO-8859-8

62223 windows-1255

62224 IBM420

156 Db2 11 for z/OS: pureXML Guide

Table 32. CCSIDs and corresponding encoding names (continued)

CCSID Encoding name

62225 IBM864

62227 ISO-8859-6

62228 windows-1256

62229 IBM424

62231 IBM862

62232 ISO-8859-8

62233 IBM420

62234 IBM420

62235 IBM424

62237 windows-1255

62238 ISO-8859-8-I

62239 windows-1255

62240 IBM424

62242 IBM862

62243 ISO-8859-8-I

62244 windows-1255

62245 IBM424

62250 IBM420

Related concepts
Encoding scenarios for retrieval of XML data with explicit XMLSERIALIZE
The target encoding scheme and application code page can affect data conversion, truncation, and
internal encoding during XML data retrieval with an explicit XMLSERIALIZE invocation.

Chapter 7. XML data encoding 157

158 Db2 11 for z/OS: pureXML Guide

Chapter 8. Overview of XQuery
XQuery is a functional programming language that was designed by the World Wide Web Consortium
(W3C) to meet specific requirements for querying and modifying XML data.

The XQuery language provides several kinds of expressions that can be constructed from keywords,
symbols, and operands. In most cases, the operands of various expressions, operators, and functions
must conform to the expected types. Db2 ignores type errors in certain situations.

XQuery supports a subset of the language constructs in the W3C recommendation.

XQuery can be used in the following contexts:

• As an argument to the XMLQUERY SQL built-in function, which extracts data from an XML column
• As an argument to the XMLEXISTS SQL predicate, which is used for evaluation of data in an XML column

XQuery expressions
The basic building block of XQuery is the expression. XQuery provides several kinds of expressions for
working with XML data:

• Primary expressions, which include the basic primitives of the language, such as literals, variable
references, and function calls

• Path expressions for locating nodes within a document tree
• Arithmetic expressions for addition, subtraction, multiplication, division, and modulus
• Comparison expressions for comparing two values
• Logical expressions for using boolean logic

XQuery expressions can be composed with full generality, which means that where an expression
is expected, any kind of expression can be used. In general, the operands of an expression are
other expressions. In the following example, the operands of a logical expression are the comparison
expressions 1 = 1 and 2 = 2:

1 = 1 and 2 = 2

XQuery processing
An XQuery expression consists of an optional prolog that establishes the processing environment and an
expression that generates a result. XQuery processing occurs in two phases: the static analysis phase and
the dynamic evaluation phase.

During the static analysis phase, the expression is parsed and augmented based on information that is
defined in the prolog. The static context is used to resolve type names, function names, and variable
names that are used by the expression. The static context includes all information that is available prior to
evaluating an expression. The static phase occurs during the Db2 BIND process or during PREPARE. If a
required name is not found in the static context, an error is raised.

The dynamic evaluation phase occurs if no errors are detected during the static analysis phase. During
the dynamic evaluation phase, the value of the expression is computed. A dynamic type is associated with
each value as the value is computed. If an operand of an expression has a dynamic type that does not
match the expected type, a type error is raised. If the evaluation generates no errors, a result is returned.
The dynamic context includes information that is available at the time the expression is evaluated.

The result of an XQuery expression is, in general, a heterogeneous sequence of XML nodes and atomic
values. More specifically, the result of an XQuery expression is an instance of the XQuery data model.

© Copyright IBM Corp. 2007, 2021 159

The XPath 2.0 and XQuery 1.0 data model
The XPath 2.0 and XQuery 1.0 data model represents an XML document as a hierarchy (tree) of nodes
that represent XML elements and attributes. Each value of the data model is a sequence that can contain
zero, one, or more items. The items can be atomic values or nodes. Every XQuery expression takes as its
input an instance of the XPath 2.0 and XQuery 1.0 data model and returns an instance of the XPath 2.0
and XQuery 1.0 data model.

XQuery data types
XQuery supports the following data types:

• xs:integer
• xs:decimal
• xs:double
• xs:string
• xs:boolean
• xs:untypedAtomic
• xs:date
• xs:dateTime
• xs:time
• xs:duration
• xs:yearMonthDuration
• xs:dayTimeDuration

Db2 checks data types during the dynamic evaluation phase and the static analysis phase. When an
expression encounters an inappropriate type, a type error is raised. For example, an XQuery expression
that uses the plus operator (+) to add two strings together results in a type error because the plus
operator is used in arithmetic expression to add numeric values only. Implicit type conversions and type
substitutions occur, when possible, to provide the type that is expected by an expression.

The built-in function library
XQuery provides a library of built-in functions for working with XML data. The library includes the
following types of functions:

• String functions
• Numeric functions
• Date and time functions
• Functions that operate on boolean values
• Functions that operate on sequences

These built-in functions are in the namespace with URI http://www.w3.org/2005/xpath-
functions, which by default is associated with the prefix fn. The default function namespace is set
to fn by default, which means that you can call functions in this namespace without specifying a prefix.

Function calls can be used anywhere in an XQuery expression where an expression is expected.

160 Db2 11 for z/OS: pureXML Guide

Best applications for XQuery or XPath
XPath provides a subset of the XQuery language. You can write better pureXML applications if you
understand when it is better to use XQuery and when it is better to use XPath.

When to use XPath
If you need only to identify qualifying documents in an XML column using an XMLEXISTS predicate, XPath
is more efficient than XQuery. XPath has the necessary function to identify the documents. In addition,
you can use an XML index with an XPath expression in an XMLEXISTS predicate, but you cannot use an
XML index with an XQuery expression.

When to use XQuery
Use XQuery when you need constructors or you need to use conditional logic.

XQuery code is more readable than:

• Code that uses XPath with the XMLDOCUMENT, XMLELEMENT, and XMLATTRIBUTES functions to
construct documents

• Code that uses XPath with the XMLTABLE, XMLDOCUMENT, XMLELEMENT, and XMLATTRIBUTES, and
XMLAGG functions to perform conditional logic

Example: Construction of documents with XPath and XQuery:

Suppose that the PURCHASEORDERS table is defined like this:

CREATE TABLE PURCHASEORDERS (
 PONUMBER VARCHAR(10) NOT NULL,
 STATUS VARCHAR(10) NOT NULL WITH DEFAULT 'New',
 XMLPO XML)

The PORDER column of the PURCHASEORDER table contains this document, which is associated with
PONUMBER '200300001':

<purchaseOrder
 xmlns="xmlns="http://posample.org"
 orderDate="2009-12-01">
 <shipTo exportCode="1">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo>
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>

Chapter 8. Overview of XQuery 161

 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</purchaseOrder>

You need to construct this document:

<invoice invoiceNo="12345">
 <name xmlns="http://posample.org">Robert Smith</name>
 <purchaseOrderNo>200300001</purchaseOrderNo>
 <amount>278.94</amount>
</invoice>

XPath code to construct the document looks similar to this code:

SELECT XMLDOCUMENT(
 XMLELEMENT(NAME "invoice",
 XMLATTRIBUTES('12345' as "invoiceNo"),
 XMLQUERY('declare default element namespace "http://posample.org";
 /purchaseOrder/billTo/name' PASSING XMLPO),
 XMLELEMENT(NAME “purchaseOrderNo”,
 PONUMBER),
 XMLELEMENT(NAME "amount",
 XMLQUERY('declare default element namespace "http://posample.org";
 fn:sum(/purchaseOrder/items/item/xs:decimal(USPrice))'
 PASSING XMLPO)
)
)
)
 FROM PURCHASEORDERS PO
 WHERE PONUMBER = '200300001'

You can construct the same document using the following XQuery code, which is easier to interpret:

SELECT XMLQUERY(
 'let $x := /purchaseOrder
 return
 <invoice invoiceNo= "12345">
 {$x/billTo/name}
 <purchaseOrderNo> { $y } </purchaseOrderNo>
 <amount> { fn:sum($x/items/item/xs:decimal(USPrice)) } </amount>
 </invoice>' PASSING XMLPO, PO.PONUMBER as "y")
FROM PurchaseOrders PO
WHERE PONUMBER = '200300001'

XML namespaces and qualified names in XQuery
XQuery uses XML namespaces to prevent naming collisions. An XML namespace is a collection of names
that is identified by a namespace URI. Namespaces provide a way of qualifying names that are used for
elements, attributes, data types, and functions in XQuery.

Names in XQuery are called QNames (qualified names) and conform to the syntax that is specified in a
recommendation by the World Wide Web Consortium (W3C). A QName consists of an optional namespace
prefix and a local name. The namespace prefix, if present, is bound to a URI and provides a shortened
form of the URI. During query processing, XQuery expands the QName by resolving the URI that is
bound to the namespace prefix. The expanded QName includes the namespace URI and a local name.
Two QNames are equal if they have the same namespace URI and local name. This means that two
QNames can match even if they have different prefixes provided that the prefixes are bound to the same
namespace URI.

Using QNames in XQuery allows expressions to refer to element types or attribute names that have the
same local name, but might be associated with different DTDs or XML Schemas. In the following XML
data, pfx1 is a prefix that is bound to some URI. pfx2 is a prefix that is bound to a different URI. c is the
local name for all three elements:

<a xmlns:pfx1="uri1" xmlns:pfx2="uri2">

 <pfx1:c>C</pfx1:c>
 <pfx2:c>B</pfx2:c>
 <c>A</c>

162 Db2 11 for z/OS: pureXML Guide

The elements in this example share the same local name, c, but naming conflicts do not occur because
the elements exist in different namespaces. During expression processing, the name pfx1:c is expanded
into a name that includes the URI bound to pfx1 (uri1) and the local name, c. Likewise, the name
pfx2:c is expanded into a name that includes the URI bound to pfx2 (uri2) and the local name, c. The
element c, which has an empty prefix, is bound to the default element namespace because no prefix is
specified. An error is raised if a name uses a prefix that is not bound to a URI.

The namespace prefix must be an NCName (non-colonized name). An XML NCName is similar to an XML
Name except that NCName cannot include a colon.

Some namespaces are predeclared; others can be added through declarations in the XQuery expression
prolog. XQuery includes the following predeclared namespace prefixes:

Prefix URI Description

xs http://www.w3.org/2001/XMLSchema XML Schema namespace

xsi http://www.w3.org/2001/XMLSchema-instance XML Schema instance
namespace

fn http://www.w3.org/2005/xpath-functions Default function
namespace

xdt http://www.w3.org/2005/xpath-datatypes XQuery type namespace

In addition to the predeclared namespaces, namespaces can be provided in the following ways:

• The following namespace information is available in the static context:

– In-scope namespaces are a set of prefix and URI pairs. The in-scope namespaces are used for
resolving prefixes that are used in QNames in an XQuery expression. In-scope namespaces come
from the following sources:

- Namespace declarations in an XQuery expression
- The XMLNAMESPACES Db2 built-in function in the XMLELEMENT or XMLFOREST Db2 built-in

function

If the XMLQUERY Db2 built-in function is an argument to XMLELEMENT or XMLFOREST, the
namespaces that are declared in that XMLELEMENT or XMLFOREST invocation become part of
the static context for the XQuery expression in the XMLQUERY invocation.

– Default element or type namespace is the namespace that is used for any unprefixed QName that
appears where an element or type name is expected. The initial default element or type namespace
is the default namespace that is provided by a declare default element namespace clause in
the prolog of an XQuery expression.

– Default function namespace is the namespace that is associated with built-in functions: http://
www.w3.org/2003/11/xpath-functions. There are no user-defined functions in XQuery.

Related information
Namespaces in XML

Case sensitivity in XQuery
XQuery is a case-sensitive language.

Keywords in XQuery use lowercase characters and are not reserved. Names in XQuery expressions are
allowed to be the same as language keywords.

Related concepts
XML namespaces and qualified names in XQuery

Chapter 8. Overview of XQuery 163

http://www.w3.org/TR/xml-names/

XQuery uses XML namespaces to prevent naming collisions. An XML namespace is a collection of names
that is identified by a namespace URI. Namespaces provide a way of qualifying names that are used for
elements, attributes, data types, and functions in XQuery.

Whitespace in XQuery
Whitespace is allowed in most XQuery expressions to improve readability even if whitespace is not part
of the syntax for the expression. Whitespace consists of space characters (U+0020), carriage returns
(U+000D), line feeds (U+000A), and tabs (U+0009).

In general, whitespace is not significant in an XQuery expression, except in the following situations where
whitespace is preserved:

• The whitespace is in a string literal.
• The whitespace clarifies an expression by preventing two adjacent tokens from being mistakenly

recognized as one.
• The whitespace is in an element constructor. The boundary-space declaration in the prolog determines

whether to preserve or strip whitespace in element constructors.

The following examples include expressions that require whitespace for clarity:

• one- two results in a syntax error. The parser recognizes one- as a single QName (qualified name) and
raises an error when no operator is found.

• one -two does not result in a syntax error. The parser recognizes one as a QName, the minus sign (-)
as an operator, and then two as another QName.

• one-two does not result in a syntax error. However, the expression parses as a single QName because a
hyphen (-) is a valid character in a QName.

• The following expressions all result in syntax errors:

– 5 div2
– 5div2

In these expressions, whitespace is required for the parser to recognize each token separately. Notice
that 5div 2 does not result in a syntax error.

Comments in XQuery
Comments are allowed in an XQuery expression, wherever nonessential whitespace is allowed.
Comments do not affect expression processing.

A comment is a string that is delimited by the symbols (: and :). The following example is a comment in
XQuery:

(: This is a comment. It makes code easier to understand. :)

The following general rules apply to using comments in XQuery:

• Comments can be used wherever nonessential whitespace is allowed. Nonessential whitespace is
whitespace that is not part of the syntax of an XQuery expression.

• Comments can nest within each other, but each nested comment must have open and close delimiters,
(: and :).

The following examples illustrate legal comments and comments that result in errors:

• (: is this a comment? ::) is a legal comment.
• (: is this a comment? ::) or an error? :) results in an error because there is an

unbalanced nesting of the symbols (: and :).
• (: commenting out a (: comment :) may be confusing, but often helpful :) is a

legal comment because a balanced nesting of comments is allowed.

164 Db2 11 for z/OS: pureXML Guide

• "this is just a string :)" is a legal expression.
• (: "this is just a string :)" :) results in a syntax error. Likewise, "this is another
string (:" is a legal expression, but (: "this is another string (:" :) results in a syntax
error. Literal content can result in an unbalanced nesting of comments.

Chapter 8. Overview of XQuery 165

166 Db2 11 for z/OS: pureXML Guide

Chapter 9. XQuery type system
XQuery is a strongly typed language in which the operands of various expressions, operators, and
functions conform to expected types.

The type system for XQuery includes a subset of the built-in types of XML schema and the predefined
types of XQuery.

The built-in types of XML Schema are in the namespace http://www.w3.org/2001/XMLSchema,
which has the predeclared namespace prefix xs. Some examples of built-in schema types include
xs:integer and xs:string.

Overview of the type system
The type system for XQuery includes simple atomic types and complex types. A simple atomic type is a
primitive or derived atomic type that does not contain elements or attributes. A complex type can contain
mixed content or element-only content.

Constructor functions for built-in data types
Every built-in atomic type that is defined in the XML Schema Definition language has an associated
constructor function.

Syntax
prefix:type ( value)

prefix
The prefix that is bound to the namespace for the data type. This is not the prefix that is bound to the
default function namespace.

type
The unqualified name of the target data type.

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

Returned value
If value is not the empty sequence, the returned value is an instance of prefix:type.

If value is the empty sequence, a constructor function returns the empty sequence.

Example:
The constructor function xs:integer(100) or the constructor function xs:integer("100") returns
the xs:integer value 100. A constructor function whose argument is a node with the typed value 100
also returns the typed value 100.

Related reference
xs:date
The date type xs:date represents an interval of exactly one day that begins on the first moment of a given
day.
xs:dateTime

© Copyright IBM Corp. 2007, 2021 167

The data type xs:dateTime represents an instant in time.
xs:dayTimeDuration
The data type xs:dayTimeDuration represents a duration of time that is expressed by days, hours,
minutes, and seconds components. xs:dayTimeDuration is derived from data type xs:duration.
xs:decimal
The data type xs:decimal represents a subset of the real numbers that can be represented by decimal
numerals.
xs:double
The data type xs:double is supported in XQuery by the IEEE 64-bit decimal floating point.
xs:duration
The data type xs:duration represents a duration of time that is expressed by the Gregorian year, month,
day, hour, minute, and second components. xs:duration is derived from data type xs:anyAtomicType.
xs:integer
The data type xs:integer represents a decimal number that does not include a trailing decimal point.
The base type of xs:integer is xs:decimal.
xs:string
The data type xs:string represents character strings in XML. Because xs:string is a simple type, it
cannot contain any children.
xs:time
The data type xs:time represents an instant of time that recurs every day.
xs:untypedAtomic
The data type xs:untypedAtomic serves as a special type annotation to indicate atomic values that
have not been validated by an XML schema or a DTD.
xs:yearMonthDuration
The data type xs:yearMonthDuration represents a duration of time that is expressed by the Gregorian year
and month components. xs:yearMonthDuration is derived from data type xs:duration.

Generic data types
Generic data types support data that is not strongly typed.

xs:anyType
The data type xs:anyType is the base type for all data types that are defined in the XML Schema
Definition language.
Related concepts
Data model generation in XQuery
Before an XQuery expression can be processed, the input documents must be represented in the
pureXML data model.
Related reference
xs:anySimpleType
The data type xs:anySimpleType is the base type for all primitive types that are defined in the XML
Schema Definition language.
xs:untyped
The data type xs:untyped serves as a special type annotation to indicate types that have not been
validated by an XML schema or a DTD. The data type xs:untyped can be used (for example, in a function

168 Db2 11 for z/OS: pureXML Guide

signature) to define a required type to indicate that only an untyped value is acceptable. The base type of
xs:untyped is xs:anyType.

xs:anySimpleType
The data type xs:anySimpleType is the base type for all primitive types that are defined in the XML
Schema Definition language.

xs:anySimpleType is used to define a required type (for example, in a function signature) to indicate
that any simple type is acceptable. The base type of xs:anySimpleType is xs:anyType.

Casting is not supported to or from xs:anySimpleType.

Lexical form
xs:anySimpleType can have any lexical form.
Related concepts
Data model generation in XQuery
Before an XQuery expression can be processed, the input documents must be represented in the
pureXML data model.

xs:anyAtomicType
The data type xs:anyAtomicType is the base type for all primitive atomic types that are defined in the
XML Schema Definition language.

Lexical form
The data type xs:anyAtomicType can be used to define a required type (for example, in a function
signature) to indicate that any of the primitive atomic types or xs:untypedAtomic is acceptable. The
base type of xs:anyAtomicType is xs:anySimpleType.

xs:anyAtomicType can have any lexical form.

Related reference
xs:untypedAtomic
The data type xs:untypedAtomic serves as a special type annotation to indicate atomic values that
have not been validated by an XML schema or a DTD.

Data types for untyped data
The xs:untyped and xs:untypedAtomic data types support untyped data.

xs:untyped
The data type xs:untyped serves as a special type annotation to indicate types that have not been
validated by an XML schema or a DTD. The data type xs:untyped can be used (for example, in a function
signature) to define a required type to indicate that only an untyped value is acceptable. The base type of
xs:untyped is xs:anyType.

If an element node is annotated as xs:untyped, all of its descendant element nodes are also annotated
as xs:untyped

Related reference
xs:anyType

Chapter 9. XQuery type system 169

The data type xs:anyType is the base type for all data types that are defined in the XML Schema
Definition language.

xs:untypedAtomic
The data type xs:untypedAtomic serves as a special type annotation to indicate atomic values that
have not been validated by an XML schema or a DTD.

An attribute that has an unknown type is represented in the data model by an attribute node with the
type xs:untypedAtomic. The data type xs:untypedAtomic can be used (for example, in a function
signature) to define a required type to indicate that only an untyped atomic value is acceptable. The base
type of xs:untypedAtomic is xs:anyAtomicType.

Lexical form
xs:untypedAtomic can have any lexical form.

Constructor
Use the following syntax to construct an instance of xs:untypedAtomic:

xs:untypedAtomic( value)

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

Related reference
xs:anyAtomicType
The data type xs:anyAtomicType is the base type for all primitive atomic types that are defined in the
XML Schema Definition language.

xs:string
The data type xs:string represents character strings in XML. Because xs:string is a simple type, it
cannot contain any children.

Lexical form
The lexical form of xs:string is a sequence of characters that can include any character that is in the
range of legal characters for XML.

Constructor
Use the following syntax to construct an instance of xs:string:

xs:string( value)

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

170 Db2 11 for z/OS: pureXML Guide

Numeric data types
The xs:decimal, xs:double, and xs:integer data types support numeric data.

xs:decimal
The data type xs:decimal represents a subset of the real numbers that can be represented by decimal
numerals.

Lexical form
The lexical form of xs:decimal is a finite-length sequence of decimal digits (0 to 9) that are separated
by a period as a decimal indicator. An optional leading sign is allowed. If the sign is omitted, a positive
sign (+) is assumed. Leading and trailing zeroes are optional. If the fractional part is zero, the period and
any following zeroes can be omitted. The following numbers are all valid examples of a decimal: -1.23,
12678967.543233, +100000.00, 210. .

Constructor
Use the following syntax to construct an instance of xs:decimal:

xs:decimal( value)

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

xs:double
The data type xs:double is supported in XQuery by the IEEE 64-bit decimal floating point.

Lexical form

The lexical form of xs:double is a mantissa followed, optionally, by the character E or e, followed
by an exponent. The exponent must be an integer. The mantissa must be a decimal number.
The representations for exponent and mantissa must follow the lexical rules for xs:integer and
xs:decimal. If the E or e and the exponent that follows are omitted, an exponent value of 0 is assumed.

The special values positive infinity, negative infinity, and not-a-number have the lexical representations
INF, -INF and NaN, respectively. Lexical representations for zero can take a positive or negative sign. The
following literals are all valid examples of a double: -1E4, 1267.43233E12, 12.78e-2, 12 , -0,
0 and INF.

Constructor
Use the following syntax to construct an instance of xs:double:

xs:double( value)

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

Related reference
xs:decimal

Chapter 9. XQuery type system 171

The data type xs:decimal represents a subset of the real numbers that can be represented by decimal
numerals.
xs:integer
The data type xs:integer represents a decimal number that does not include a trailing decimal point.
The base type of xs:integer is xs:decimal.

xs:integer
The data type xs:integer represents a decimal number that does not include a trailing decimal point.
The base type of xs:integer is xs:decimal.

Lexical form
The lexical form of xs:integer is a finite-length sequence of decimal digits (0 to 9) with an optional
leading sign. If the sign is omitted, a positive sign (+) is assumed. The following numbers are all valid
examples of integers: -1, 0, 12678967543233, +100000.

Constructor
Use the following syntax to construct an instance of xs:integer:

xs:integer( value)

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

Related reference
xs:decimal
The data type xs:decimal represents a subset of the real numbers that can be represented by decimal
numerals.

Range limits for numeric types
XQuery has range limits for numeric data types.

The following table lists the range limit and SQL equivalent for each XQuery numeric data type.

Table 33. Range limits for numeric types

XML type Db2 XML range SQL type mapping

xs:double 34 digits of precision and an
exponent range of 10**-6143 to
10**+6144

DECFLOAT

xs:decimal Up to 34 digits of precision, and a
range of 1-10**34 to 10**34 -1

DECIMAL

xs:integer -9223372036854775808 to
9223372036854775807

BIGINT

Related reference
xs:decimal
The data type xs:decimal represents a subset of the real numbers that can be represented by decimal
numerals.
xs:double

172 Db2 11 for z/OS: pureXML Guide

The data type xs:double is supported in XQuery by the IEEE 64-bit decimal floating point.
xs:integer
The data type xs:integer represents a decimal number that does not include a trailing decimal point.
The base type of xs:integer is xs:decimal.

xs:boolean
The data type xs:boolean supports the mathematical concept of binary-valued logic: true or false.

Lexical form
The lexical form of the data type xs:boolean can be one of the literal values true, false, 1, or 0.

Constructor
Use the following syntax to construct an instance of xs:boolean:

xs:boolean( value)

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

Date and time data types
The xs:date, xs:time, and xs:dateTime data types support date and time data.

xs:date
The date type xs:date represents an interval of exactly one day that begins on the first moment of a given
day.

Lexical form
The lexical form of xs:date is a finite-length sequence of characters of the following form: yyyy-mm-
ddzzzzzz. The following abbreviations describe this form:
yyyy

A four-digit numeral that represents the year.

The value cannot begin with a negative (-) sign or a plus (+) sign.

0001 is the lexical representation of the year 1 of the Common Era (also known as 1 AD).

The value cannot be 0000.

-
Separators between parts of the date.

mm
A two-digit numeral that represents the month.

dd
A two-digit numeral that represents the day.

zzzzzz
Optional. If present, represents the time zone.

Chapter 9. XQuery type system 173

Timezone indicator
The lexical form for the time zone indicator is a string that includes one of the following forms:

• A positive (+) or negative (-) sign that is followed by hh:mm, where the following abbreviations are used:
hh

A two-digit numeral (with leading zeros as required) that represents the hours. The value must be
between -14 and +14, inclusive.

mm
A two-digit numeral that represents the minutes. The value of the minutes property must be zero
when the hours property is equal to 14.

+
Indicates that the specified time instant is in a time zone that is ahead of the UTC time by hh hours
and mm minutes.

-
Indicates that the specified time instant is in a time zone that is behind UTC time by hh hours and
mm minutes.

• The literal Z, which represents the time in UTC (Z represents Zulu time, which is equivalent to UTC).
Specifying Z for the time zone is equivalent to specifying +00:00 or -00:00.

Example

The following form indicates 10 October 2009, Eastern Standard Time in the United States:

2009-10-10-05:00

This date is expressed in UTC as 2009-10-10T05:00:00Z..

xs:dateTime
The data type xs:dateTime represents an instant in time.

The xs:dateTime data type has several properties. The following properties:

• year
• month
• day
• hour
• minute
• second
• time zone (optional)

The year, month, day, hour, and minute properties are expressed as integer values. The seconds property
is expressed as a decimal value. The time zone property is expressed as a time zone indicator.

Lexical form
The lexical form of xs:dateTime is a finite-length sequence of characters of the following form: yyyy-mm-
ddThh:mm:ss.sssssssssssszzzzzz. The following abbreviations describe this form:

yyyy
A four-digit numeral that represents the year.

The value cannot begin with a negative (-) sign or a plus (+) sign.

0001 is the lexical representation of the year 1 of the Common Era (also known as 1 AD).

The value cannot be 0000.

174 Db2 11 for z/OS: pureXML Guide

-
Separators between parts of the date portion

mm
A two-digit numeral that represents the month.

dd
A two-digit numeral that represents the day.

T
A separator to indicate that the time of day follows.

hh
A two-digit numeral (with leading zeros as required) that represents the hours. The value must be
between -14 and +14, inclusive.

:
A separator between parts of the time portion.

mm
A two-digit numeral that represents the minute.

ss
A two-digit numeral that represents the whole seconds.

.ssssssssssss
Optional. If present, a 1-to-12 digit numeral that represents the fractional seconds.

zzzzzz
Optional. If present, represents the time zone offset from UTC (Coordinated Universal Time). If not
specified, an implicit time of UTC (Coordinated Universal Time) is used.

Each part of the datetime value that is expressed as a numeric value is constrained to the maximum value
within the interval that is determined by the next-higher part of the datetime value. For example, the day
value can never be 32 and cannot be 29 for month 02 and year 2002 (February 2002).

Timezone indicator
The lexical form for the time zone indicator is a string that includes one of the following forms:

• A positive (+) or negative (-) sign that is followed by hh:mm, where the following abbreviations are used:
hh

A two-digit numeral (with leading zeros as required) that represents the hours. The value must be
between -14 and +14, inclusive.

mm
A two-digit numeral that represents the minutes. The value of the minutes property must be zero
when the hours property is equal to 14.

+
Indicates that the specified time instant is in a time zone that is ahead of the UTC time by hh hours
and mm minutes.

-
Indicates that the specified time instant is in a time zone that is behind UTC time by hh hours and
mm minutes.

• The literal Z, which represents the time in UTC (Z represents Zulu time, which is equivalent to UTC).
Specifying Z for the time zone is equivalent to specifying +00:00 or -00:00.

Example

The following form indicates noon on 10 October 2009, Eastern Standard Time in the United States:

2009-10-10T12:00:00-05:00

This time is expressed in UTC as 2009-10-10T17:00:00Z.

Chapter 9. XQuery type system 175

xs:dayTimeDuration
The data type xs:dayTimeDuration represents a duration of time that is expressed by days, hours,
minutes, and seconds components. xs:dayTimeDuration is derived from data type xs:duration.

The range that can be represented by this data type is from
-P11574074073DT23H163M219.999999999999S to P11574074073DT23H163M219.999999999999S
(or -999999999999999.999999999999 seconds to 999999999999999.999999999999 seconds).

The lexical form of xs:dayTimeDuration is PnDTnHnMnS, which is a reduced form of the ISO 8601 format.
The following abbreviations describe this form:

P
The duration designator.

nD
n is an unsigned integer that represents the number of days.

T
The date and time separator.

nH
n is an unsigned integer that represents the number of hours.

nM
n is an unsigned integer that represents the number of minutes.

nS
n is an unsigned decimal that represents the number of seconds. If a decimal point appears, it must
be followed by one to twelve digits that represent fractional seconds.

For example, the following form indicates a duration of 3 days, 10 hours, and 30 minutes:

P3DT10H30M

The following form indicates a duration of negative 120 days:

-P120D

An optional preceding minus sign (-) indicates a negative duration. If the sign is omitted, a positive
duration is assumed.

Reduced precision and truncated representations of this format are allowed, but they must conform to the
following requirements:

• If the number of days, hours, minutes, or seconds in any expression equals zero, the number and its
corresponding designator can be omitted. However, at least one number and its designator must be
present.

• The seconds part can have a decimal fraction.
• The designator T must be absent if and only if all of the time items are absent. The designator P must

always be present.

For example, the following forms are allowed:

P13D
PT47H
P3DT2H
-PT35.89S
P4DT251M

The form P-134D is not allowed, but the form -P1347D is allowed.

Db2 database system stores xs:dayTimeDuration values in a normalized form. In the normalized form,
the seconds and minutes components are less than 60, and the hours component is less than 24. Db2
converts each multiple of 60 seconds to one minute, each multiple of 60 minutes to one hour, and each

176 Db2 11 for z/OS: pureXML Guide

multiple of 24 hours to one day. For example, the following XQuery expression invokes a constructor
function specifying a dayTimeDuration of 63 days, 55 hours, and 81 seconds:

xs:dayTimeDuration("P63DT55H81S")

Db2 converts 55 hours to 2 days and 7 hours, and 81 seconds to 1 minute and 21 seconds. The
expression returns the normalized dayTimeDuration value P65DT7H1M21S.

xs:duration
The data type xs:duration represents a duration of time that is expressed by the Gregorian year, month,
day, hour, minute, and second components. xs:duration is derived from data type xs:anyAtomicType.

The range that can be represented by this data type
is from -P83333333333333Y3M11574074074DT1H46M39.999999999999S to
P83333333333333Y3M11574074074DT1H46M39.999999999999S (or -999999999999999 months
and -999999999999999.999999999999 seconds to 999999999999999 months and
999999999999999.999999999999 seconds).

The lexical form of xs:duration is the ISO 8601 extended format PnYnMnDTnHnMnS. The following
abbreviations describe the extended format:

P
The duration designator.

nY
n is an unsigned integer that represents the number of years.

nM
n is an unsigned integer that represents the number of months.

nD
n is an unsigned integer that represents the number of days.

T
The date and time separator.

nH
n is an unsigned integer that represents the number of hours.

nM
n is an unsigned integer that represents the number of minutes.

nS
n is an unsigned decimal that represents the number of seconds. If a decimal point appears, it must
be followed by one to twelve digits that represent fractional seconds.

For example, the following form indicates a duration of 1 year, 2 months, 3 days, 10 hours, and 30
minutes:

P1Y2M3DT10H30M

The following form indicates a duration of negative 120 days:

-P120D

An optional preceding minus sign (-) indicates a negative duration. If the sign is omitted, a positive
duration is assumed.

Reduced precision and truncated representations of this format are allowed, but they must conform to the
following requirements:

• If the number of years, months, days, hours, minutes, or seconds in any expression equals zero,
the number and its corresponding designator can be omitted. However, at least one number and its
designator must be present.

• The seconds part can have a decimal fraction.

Chapter 9. XQuery type system 177

• The designator T must be absent if and only if all of the time items are absent.
• The designator P must always be present.

For example, the following forms are allowed:

P1347Y
P1347M
P1Y2MT2H
P0Y1347M
P0Y1347M0D

The form P1Y2MT is not allowed because no time items are present. The form P-1347M is not allowed,
but the form -P1347M is allowed.

The Db2 database system stores xs:duration values in a normalized form. In the normalized form, the
seconds and minutes components are less than 60, the hours component is less than 24, and the months
component is less than 12. Db2 converts each multiple of 60 seconds to one minute, each multiple of 60
minutes to one hour, each multiple of 24 hours to one day, and each multiple of 12 months to one year.
For example, the following XQuery expression invokes a constructor function that specifies a duration of 2
months, 63 days, 55 hours, and 91 minutes:

xs:duration("P2M63DT55H91M")

Db2 converts 55 hours to 2 days and 7 hours, and 91 minutes to 1 hour and 31 minutes. The expression
returns the normalized duration value P2M65DT8H31M.

xs:time
The data type xs:time represents an instant of time that recurs every day.

Lexical form
The lexical form of the data type xs:time is hh:mm:ss.sssssssssssszzzzzz.

The following abbreviations describe this form:

hh
A two-digit numeral (with leading zeros as required) that represents the hours.

:
A separator between parts of the time portion.

mm
A two-digit numeral that represents the minute.

ss
A two-digit numeral that represents the whole seconds.

.ssssssssssss
Optional. If present, a 1-to-12 digit numeral that represents the fractional seconds.

zzzzzz
Optional. If present, represents the time zone.

Example

The following form, which includes an optional time zone indicator, represents 1:20 p.m. Eastern
Standard Time, which is five hours behind than Coordinated Universal Time (UTC):

13:20:00-05:00

178 Db2 11 for z/OS: pureXML Guide

xs:yearMonthDuration
The data type xs:yearMonthDuration represents a duration of time that is expressed by the Gregorian year
and month components. xs:yearMonthDuration is derived from data type xs:duration.

The range that can be represented by this data type is from -P83333333333333Y3M to
P83333333333333Y3M (or -999999999999999 to 999999999999999 months).

The lexical form of xs:yearMonthDuration is PnYnM, which is a reduced form of the ISO 8601 format. The
following abbreviations describe this form:

P
The duration designator.

nY
n is an unsigned integer that represents the number of years.

nM
n is an unsigned integer that represents the number of months.

An optional preceding minus sign (-) indicates a negative duration. If the sign is omitted, a positive
duration is assumed.

For example, the following form indicates a duration of 1 year and 2 months:

P1Y2M

The following form indicates a duration of negative 13 months:

-P13M

Reduced precision and truncated representations of this format are allowed, but they must conform to the
following requirements:

• The designator P must always be present.
• If the number of years or months in any expression equals zero, the number and its corresponding

designator can be omitted. However, at least one number and its designator (Y or M) must be present.

For example, the following forms are allowed:

P1347Y
P1347M

The form P-1347M is not allowed, but the form -P1347M is allowed. The form P24YM is not allowed
because M must have one preceding digit. PY43M is not allowed because Y must have at least one
preceding digit.

Db2 stores xs:yearMonthDuration values in a normalized form. In the normalized form, the months
component is less than 12. Db2 converts each multiple of 12 months to one year. For example, the
following XQuery expression invokes a constructor function that specifies a yearMonthDuration of 20
years and 30 months:

xs:yearMonthDuration("P20Y30M")

Db2 converts 30 months to 2 years and 6 months. The expression returns the normalized
yearMonthDuration value P22Y6M.

Casts between XML schema data types
You can use data type constructor functions to cast a value to a specific data type. Specify the value that
you want to cast and the type to which you want to cast it.

The following table lists the compatible types for casting. You can cast values only of the listed input
types to each target type.

Chapter 9. XQuery type system 179

Table 34. Compatible types for casting

Target type Source type Comments

xs:untypedAtomic Any type

xs:string Any type • If the source type is xs:boolean, the result is
true or false.

• If the source type is xs:integer, the result
is the canonical lexical representation of
the value, as defined in the XML Schema
specification.

• If the source type is xs:decimal:

– If the value has no significant digits after
the decimal point, the decimal point and
the zeroes that follow the decimal point
are deleted, and the rules for casting from
xs:integer apply.

– Otherwise, the result is the canonical
lexical representation of the value, as
defined in the XML Schema specification.

• If the source type is xs:double:

– If .000001<=value<=1000000, the value
is converted to xs:decimal, and the rules
for casting from xs:decimal apply.

– If value=+0, or value=-0, the result is '0'.
– Otherwise, the result is the canonical

lexical representation of the value, as
defined in the XML Schema specification.

• If the source type is xs:yearMonthDuration
or xs:dayTimeDuration, the result is the
canonical lexical representation of the value.

• If the source type is xs:date, xs:dateTime,
or xs:time, the result is the lexical
representation of the value, with no
adjustment for the time zone. If the value
has no time zone, the result has no time
zone. If the time zone is +00:00 or -00:00,
the result has the UTC time zone "Z".

xs:boolean xs:untypedAtomic, xs:string,
xs:boolean, xs:double,
xs:decimal, xs:integer

• If the source type is numeric, a value of 0 or
NaN is cast to type xs:boolean with a value
of false.

• If the source type is xs:string or
xs:untypedAtomic, the value "true" and the
value "1" are cast to the xs:boolean value
true. The value "false" and the value "0" are
cast to the xs:boolean value false. All other
values are invalid, and result in an error.

180 Db2 11 for z/OS: pureXML Guide

Table 34. Compatible types for casting (continued)

Target type Source type Comments

xs:dayTimeDuration xs:duration, xs:untypedAtomic,
xs:string

A cast from xs:duration to xs:dayTimeDuration
results in information loss. To avoid
information loss, cast the xs:duration value
to an xs:yearMonthDuration value and an
xs:dayTimeDuration value and work with both
values.

xs:decimal Numeric types,
xs:untypedAtomic, xs:string,
xs:boolean

Values of numeric types are converted to a
value that is within the set of possible values
for type xs:decimal and is numerically closest
to the source. If two values are equally close,
the one that is closest to zero is chosen. The
source value cannot be +INF, -INF, NaN, or
outside of the range of type xs:decimal. For
values of type xs:boolean, true is converted to
1.0, and false is converted to 0.0.

xs:double Numeric types,
xs:untypedAtomic, xs:string,
xs:boolean

If the source is of type xs:decimal,
or xs:integer, the cast is performed as
xs:double(SV cast as xs:string) where SV is
the source value. If the source is of type
xs:boolean, true is cast to a value of 1.0E0,
and false is cast to a value of 0.0E0.

xs:duration xs:dayTimeDuration,
xs:yearMonthDuration,
xs:untypedAtomic, xs:string

• If the source type is xs:dayTimeDuration,
the target value has the same days, hours,
minutes and seconds components as the
source value. The year component and the
month component of the target value are 0.

• If the source type is xs:yearMonthDuration,
the target value has the same years and
months components as the source value.
The days, hours, minutes and seconds
components are 0.

xs:integer Numeric types,
xs:untypedAtomic, xs:string,
xs:boolean

If the source type is a numeric type other than
integer, the result is the source value with the
fractional part discarded. The source cannot
be outside of the range of type xs:integer. For
values of type xs:boolean, true is converted to
1, and false is converted to 0.

xs:date xs:dateTime, xs:untypedAtomic,
xs:string

The time portion of the source value is not
used in the conversion.

xs:time xs:dateTime, xs:untypedAtomic,
xs:string

The date portion of the source value is not
used in the conversion.

xs:dateTime xs:date, xs:untypedAtomic,
xs:string

The time portion of the target value is the
first moment of the day. The value is not
adjustment for the time zone.

Chapter 9. XQuery type system 181

Table 34. Compatible types for casting (continued)

Target type Source type Comments

xs:yearMonthDuration xs:duration, xs:untypedAtomic,
xs:string

A cast from xs:duration to
xs:yearMonthDuration results in information
loss. To avoid information loss, cast the
xs:duration value to an xs:yearMonthDuration
value and an xs:dayTimeDuration value and
work with both values.

Example
The following XQuery expression returns purchase orders that contain more than one item. The xs:integer
constructor function casts the value of the quantity element to an integer. That integer can then be
compared to the integer 1.

declare namespace ipo="http://www.example.com/IPO";
/ipo:purchaseOrder[items/item/quantity/xs:integer(.) > 1]

If the result of the path expression is not explicitly cast to an integer, Db2 converts both operands to type
xs:double to make the numeric comparison. The cast ensures that the values are compared as values of
type xs:integer.
Related reference
Castable expressions
Castable expressions test whether a value can be cast to a specific data type. If the value can be cast to
the data type, the castable expression returns true. Otherwise, the expression returns false.
xs:date
The date type xs:date represents an interval of exactly one day that begins on the first moment of a given
day.
xs:dateTime
The data type xs:dateTime represents an instant in time.
xs:decimal
The data type xs:decimal represents a subset of the real numbers that can be represented by decimal
numerals.
xs:double
The data type xs:double is supported in XQuery by the IEEE 64-bit decimal floating point.
xs:integer
The data type xs:integer represents a decimal number that does not include a trailing decimal point.
The base type of xs:integer is xs:decimal.
xs:string
The data type xs:string represents character strings in XML. Because xs:string is a simple type, it
cannot contain any children.
xs:time
The data type xs:time represents an instant of time that recurs every day.
xs:untypedAtomic
The data type xs:untypedAtomic serves as a special type annotation to indicate atomic values that
have not been validated by an XML schema or a DTD.

182 Db2 11 for z/OS: pureXML Guide

Chapter 10. XQuery prologs and expressions
In XQuery, an XQuery expression consists of an optional prolog that is followed by an expression. The
prolog contains a series of declarations that define the processing environment for the expression. The
path expression consists of an expression that defines the result of the XQuery expression.

Syntax
The following diagrams show the general format of an XQuery expression.

XQuery expression

prolog

expression

expression
primary-expression

logical-expression

comparison-expression

arithmetic-expression

path-expression

prolog

boundary-space-declaration

copy-namespaces-declaration

namespace-declaration

default-namespace-declaration

Example

The following example illustrates the structure of a typical expression in XQuery. In this example, the
prolog contains a namespace declaration that binds the prefix ns1 to a URI. The expression body contains
an expression that returns all documents in the XMLPO column where the name attribute on the shipTo
node is "Jane" and the name attribute on the billTo node is "Jason":

SELECT XMLQUERY ('declare namespace ipo="http://www.example.com/IPO";
/ipo:purchaseOrder[shipTo/name = "Jane" and
billTo/name = "Jason"]'
PASSING XMLPO)
FROM T1;

Figure 6. Structure of a typical expression in XQuery

Prologs
The prolog consists of a declaration that defines the processing environment for an XQuery expression.
A declaration in the prolog is followed by a semicolon (;). The prolog is an optional part of the XQuery
expression.

The prolog can contain zero or one boundary space declaration, zero or one copy namespaces
declaration, zero or more namespace declarations, and zero or one default namespace declaration.

© Copyright IBM Corp. 2007, 2021 183

Related concepts
XML namespaces and qualified names in XQuery
XQuery uses XML namespaces to prevent naming collisions. An XML namespace is a collection of names
that is identified by a namespace URI. Namespaces provide a way of qualifying names that are used for
elements, attributes, data types, and functions in XQuery.
Related reference
Default namespace declarations
Default namespace declarations are optional declarations in the XQuery expression prolog that specify the
namespaces to use for unprefixed QNames (qualified names).

Boundary-space declaration
A boundary-space declaration in the query prolog sets the boundary-space policy for the query.
The boundary-space policy controls how boundary whitespace is processed by element constructors.
Boundary whitespace includes all whitespace characters that occur by themselves in the boundaries
between tags or enclosed expressions in element constructors.

The boundary-space policy can specify that boundary whitespace is either preserved or stripped
(removed) when elements are constructed. If no boundary-space declaration is specified, the default
behavior is to strip boundary whitespace when elements are constructed.

The prolog can contain only one boundary-space declaration for a query.

Syntax
boundary-space-declaration

declare boundary-space

strip

preserve ;

strip
Specifies that boundary whitespace is removed when elements are constructed.

preserve
Specifies that boundary whitespace is preserved when elements are constructed.

Example

The following boundary-space declaration specifies that boundary whitespace is preserved when
elements are constructed:

declare boundary-space preserve;

Copy-namespaces declaration
The copy-namespaces declaration in the query prolog sets the policy for the query. The copy-namespaces
policy controls how the namespace bindings are assigned when an existing element node is copied by an
element constructor or document node constructor.

The setting preserve specifies that all in-scope-namespaces of the original element are retained in the
new copy. The copied node preserves its default namespace or absence of a default namespace. The
setting no-preserve specifies that unreferenced in-scope-namespaces of the original element are not
retained. The setting inherit specifies that the copied node inherits in-scope namespaces from the
constructed node. In case of a conflict, the namespace bindings that were preserved from the original
node take precedence.

A copy-namespaces declaration that specifies values other than preserve or no-preserve and
inherit results in an error. The prolog can contain only one copy-namespaces declaration for a query.

184 Db2 11 for z/OS: pureXML Guide

Syntax
declare copy-namespaces preserve

no-preserve

, inherit ;

preserve
Specifies that all in-scope namespaces of the original element are retained in the new copy.

no-preserve
Specifies that unreferenced in-scope namespaces of the original element are not retained in the new
copy.

inherit
Specifies that the copied node inherits in-scope namespaces from the constructed node.

Example

The following copy-namespace declaration is valid, but does not change the default behavior for element
construction:

declare copy-namespaces preserve, inherit;

Namespace declarations
A namespace declaration is an optional declaration in the XQuery expression prolog that declares a
namespace prefix and associates the prefix with a namespace URI.

The declaration adds the prefix-URI pair to the set of statically known namespaces for the expression.
The statically known namespaces include all of the namespaces that are known during the static
processing of an expression. The namespace declaration is in scope throughout the XQuery expression in
which it is declared. Multiple declarations of the same namespace prefix in the query prolog result in an
error.

Restriction: The prefixes xmlns and xml are reserved and cannot be specified as a prefix in a namespace
declaration.

Syntax
namespace-declaration

declare namespace prefix = stringLiteral ;

prefix
Specifies a namespace prefix that is bound to the URI. The namespace prefix is used in qualified
names (QNames) to identify the namespace for an element, attribute, data type, or function.

stringLiteral
Specifies a string literal that represents the URI to which the prefix is bound. The string literal value
must be a valid URI and cannot be a zero-length string.

You can override predeclared namespace prefixes by specifying a namespace declarations for those
prefixes. However, you cannot override the URI that is associated with the prefix xml.

The string literal cannot be http://www.w3.org/XML/1998/namespace or http://www.w3.org/2000/
xmlns/.

Example

The following namespace declaration declares the namespace prefix ns1 and associates it with the
namespace URI http://posample.org:

declare namespace ns1 = "http://posample.org";
/ns1:purchaseOrder[shipTo/name = "Jane" and billTo/name = "Jason"]

Chapter 10. XQuery prologs and expressions 185

When the expression in the example executes, the namespace prefix ns1 is associated with the
namespace URI http://posample.org. The instance of the purchase order document to which the
expression refers is the instance with the namespace URI http://posample.org.

Related concepts
XML namespaces and qualified names in XQuery
XQuery uses XML namespaces to prevent naming collisions. An XML namespace is a collection of names
that is identified by a namespace URI. Namespaces provide a way of qualifying names that are used for
elements, attributes, data types, and functions in XQuery.

Default namespace declarations
Default namespace declarations are optional declarations in the XQuery expression prolog that specify the
namespaces to use for unprefixed QNames (qualified names).

An XQuery expression prolog can include a default element namespace declaration.

The default element namespace declaration specifies a namespace URI that is used for unprefixed
element names. The XQuery expression prolog can contain one default element namespace declaration
only. This declaration is in scope throughout the expression in which it is declared. If no default element
namespace is declared, unqualified element names are in no namespace.

Syntax
default-namespace-declaration

declare default element namespace stringLiteral ;

namespace
Specifies a string literal that represents the URI for the namespace. The string literal must be a valid
URI or a zero-length string.

If namespace is a zero-length string, unprefixed element names are in no namespace.

The string literal cannot be http://www.w3.org/XML/1998/namespace or http://www.w3.org/2000/
xmlns/.

Example
The following declaration specifies that the default namespace for element names is the namespace that
is associated with the URI http://posample.org

declare default element namespace "http://posample.org";

When the query in the example executes, all element nodes in this expression (purchaseOrder, shipTo,
billTo, and name) are associated with the namespace URI http://posample.org.

declare default element namespace "http://posample.org";
/purchaseOrder[shipTo/name = "Jane" and billTo/name = "Jason"]

When the expression in the example executes, the namespace URI http://posample.org is associated with
all unprefixed element names in the expression.

Related concepts
XML namespaces and qualified names in XQuery

186 Db2 11 for z/OS: pureXML Guide

XQuery uses XML namespaces to prevent naming collisions. An XML namespace is a collection of names
that is identified by a namespace URI. Namespaces provide a way of qualifying names that are used for
elements, attributes, data types, and functions in XQuery.

Expressions
XQuery supports several kinds of expressions for working with XML data.

Expression evaluation and processing
A number of operations are often included in the processing of expressions. These operations include
extracting atomic values from nodes and using type promotion and subtype substitution to obtain values
of an expected type.

Atomization
Atomization is the process of converting a sequence of items into a sequence of atomic values.
Atomization is used by expressions whenever a sequence of atomic values is required.

Each item in a sequence is converted to an atomic value by applying the following rules:

• If the item is an atomic value, then the atomic value is returned.
• If the item is a node, its typed value is returned. The typed value of a node is a sequence of zero or

more atomic values that can be extracted from the node. If the node has no typed value, then an error is
returned.

Implicit atomization of a sequence produces the same result as invoking the fn:data function explicitly on
a sequence.

For example, the following sequence contains a combination of nodes and atomic values:

("Some text", <anElement>More text</anElement>, 1001)

Applying atomization to this sequence results in the following sequence of atomic values:

("Some text", "More text", 1001)

The following XQuery expressions use atomization to convert items into atomic values:

• Arithmetic expressions
• Comparison expressions
• Function calls with arguments whose expected types are atomic
• Cast expressions

Type promotion
Type promotion is a process that converts an atomic value from its original type to the type that is
expected by an expression. XQuery uses type promotion during the evaluation of function calls and
operators that accept numeric or string operands.

XQuery permits the following type promotions:
Numeric type promotion:

A value of type xs:decimal (or any type that is derived by restriction from xs:decimal) can be promoted
to xs:double. The result of this promotion is created by casting the original value to the required type.

In the following example, a sequence that contains the xs:double value 13.54e-2 and the xs:decimal
value 100 is passed to the fn:sum function, which returns a value of type xs:double:

fn:sum(xs:double(13.54e-2), xs:decimal(100))

Type promotion and subtype substitution differ in the following ways:

Chapter 10. XQuery prologs and expressions 187

• For type promotion, the atomic value is actually converted from its original type to the type that is
expected by an expression.

• For subtype substitution, an expression that expects a specific type can be invoked with a value that is
derived from that type. However, the value retains its original type.

Subtype substitution
Subtype substitution is the use of a value whose type is derived from an expected type.

Subtype substitution does not change the actual type of a value. For example, if an xs:integer value is
used where an xs:decimal value is expected, the value retains its type as xs:integer.

Subtype substitution is used whenever a value that is derived from an expected type is passed to an
expression.

Primary expressions
Primary expressions are basic primitives of the language.

Syntax
primary-expression

literal

variable-reference

parenthesized-expression

context-item-expression

function-call

Literals
XQuery supports two kinds of literals: numeric literals and string literals.

A numeric literal is an atomic value of type xs:integer, xs:decimal, or xs:double. A numeric literal
that contains no decimal point (.) and no e or E character is an atomic value of the type xs:integer.
A numeric literal that contains a decimal point (.), but no e or E character is an atomic value of type
xs:decimal. A numeric literal that contains an e or E character is an atomic value of type xs:double.
Values of numeric literals are interpreted according to the rules of XML Schema.

A string literal is an atomic value of type xs:string that is enclosed in delimiting apostrophes or
quotation marks. String literals can include predefined entity references and character references.

To include an apostrophe within a string literal that is delimited by apostrophes, specify two adjacent
apostrophes. Similarly, to include a quotation mark within a string literal that is delimited by quotation
marks, specify two adjacent quotation marks.

If a string literal is used in an XQuery expression within the value of an XML attribute, the characters that
are used to delimit the literal must be different from the characters that are used to delimit the attribute.

Examples

Example of an XQuery expression with numeric literals:

SELECT XMLQUERY ('7635') AS XSINTVAL,
 XMLQUERY ('8735.98834') AS XSDECVAL,
 XMLQUERY ('93948.87E+77') AS XSDOUBLEVAL
FROM T1;

188 Db2 11 for z/OS: pureXML Guide

This is the result:

XSINTVAL XSDECVAL XSDOUBLEVAL
-------- -------- -----------
7635 8735.98834 93948.87E+77

Example of an XQuery expression that contains a string literal with an embedded double quotation mark:

SELECT XMLQUERY ('"string literal double-quote "" in the middle"')
FROM T1

This is the result:

string literal double-quote " in the middle

Related concepts
XMLQUERY function for retrieval of portions of an XML document
XMLQUERY is an SQL scalar function that lets you execute an XQuery expression from within an SQL
context.
Related reference
xs:decimal
The data type xs:decimal represents a subset of the real numbers that can be represented by decimal
numerals.
xs:double
The data type xs:double is supported in XQuery by the IEEE 64-bit decimal floating point.
xs:integer
The data type xs:integer represents a decimal number that does not include a trailing decimal point.
The base type of xs:integer is xs:decimal.
xs:string
The data type xs:string represents character strings in XML. Because xs:string is a simple type, it
cannot contain any children.

Predefined entity references
A predefined entity reference is a short sequence of characters that represents a character that has some
syntactic significance in XQuery.

A predefined entity reference begins with an ampersand (&) and ends with a semicolon (;). When a string
literal is processed, each predefined entity reference is replaced by the character that it represents. The
following table lists the predefined entity references that XQuery recognizes:

Table 35. Predefined entity references in XQuery

Entity reference Character represented

< <

> >

& &

" "

' '

Related concepts
Storage structure for XML data

Chapter 10. XQuery prologs and expressions 189

The storage structure for XML data is similar to the storage structure for LOB data.

Character references
A character reference is an XML-style reference to a Unicode character that is identified by its decimal or
hexadecimal code point.

A character reference begins with either &#x or &# and ends with a semicolon (;). If the character
reference begins with &#x, the digits and letters up to the terminating semicolon (;) provide a
hexadecimal representation of the character's code point in ISO/IEC 10646. If the character reference
begins with &#, the digits up to the terminating semicolon (;) provide a decimal representation of the
character's code point.

Example

The character reference € represents the Euro symbol (€).

Variable references in XQuery
A variable reference is a QName that is preceded by a dollar sign ($). When an XQuery expression is
evaluated, each variable reference resolves to the value of the expression that is bound to the variable.

Every variable reference must match a name in the in-scope variables for the XQuery expression. In-
scope variables are bound from the SQL context that invokes the XQuery expression (XMLQUERY or
XMLEXISTS).

Two variable references are equivalent if their local names are the same and their namespace prefixes are
bound to the same namespace URI in the in-scope namespaces. An variable reference with no prefix is in
no namespace.

Examples

In the following example, the XMLQUERY function binds the value of the host variable :IHV to
$PARTNUMBER, and the value of column C1 to $QTY.

SELECT XMLQUERY('//item[@partNum = $PARTNUMBER and quantity=$QTY])'
 PASSING XMLPO, :IHV AS PARTNUMBER, C1 AS QTY)
FROM T1;

Related concepts
XMLEXISTS predicate for querying XML data
The XMLEXISTS predicate can be used to restrict the set of rows that a query returns, based on the values
in XML columns.
XMLQUERY function for retrieval of portions of an XML document
XMLQUERY is an SQL scalar function that lets you execute an XQuery expression from within an SQL
context.

Parenthesized expression
Parentheses can be used to enforce a particular order of evaluation in expressions that contain multiple
operators.

Use a parenthesized expression to explicitly specify the order of operations in a complex arithmetic
expression.

Empty parentheses are used to denote an empty sequence.

Syntax
parenthesized-expression

(

expression

)

190 Db2 11 for z/OS: pureXML Guide

Examples
In the following example, the parenthesized expressions 5+5 and 6+4 are evaluated first.

SELECT XMLQUERY (' ((5+5) * (6+4)) div 5') FROM T1

The result is 20.

Context item expressions
A context item expression consists of a single period (.). A context item expression evaluates to the item
that is currently being processed, which is known as the context item. The context item can be either a
node or an atomic value.

Example

The following example contains a context item expression that identifies nylon pants in the products
document:

SELECT XMLQUERY ('declare namespace ipo="http://www.example.com/IPO";
 /ipo:products/product/name[. = "Nylon pants"]'
 PASSING XMLPO)
FROM T1

The result is:

<name xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO">Nylon pants</name>

Related concepts
Document nodes
A document node encapsulates an XML document.
XMLQUERY function for retrieval of portions of an XML document
XMLQUERY is an SQL scalar function that lets you execute an XQuery expression from within an SQL
context.
Related reference
Axis steps
An axis step consists of three parts: an optional axis, a node test, and zero or more predicates.

Function calls in XQuery
XQuery supports calls to built-in XQuery functions.

Built-in XQuery functions are in the namespace http://www.w3.org/2003/11/xpath-functions. If
the function name in the function call has no namespace prefix, the function is considered to be in the
default function namespace.

XQuery uses the following process to evaluate functions:

1. XQuery evaluates each expression that is passed as an argument in the function call and returns a
value for each expression.

2. The value that is returned for each argument is converted to the data type that is expected for that
argument. When the expected type is a sequence of zero or more atomic types, XQuery uses the
following rules to convert the value to its expected type:

a. The given value is atomized into a sequence of atomic values.
b. Each item in the atomic sequence that is of type xs:untypedAtomic is cast to the expected

atomic type. For built-in functions where the expected type is specified as numeric, arguments of
type xs:untypedAtomic are cast to xs:double.

Chapter 10. XQuery prologs and expressions 191

c. Numeric type promotion is applied to any numeric item in the atomic sequence that can be
promoted to the expected atomic type through numeric type promotion. Numeric items include
items of type xs:integer, xs:decimal, or xs:double.

3. The function is evaluated using the converted values of its arguments. The result of the function call is
either an instance of the function's declared return type or an error.

Examples

The following function call retrieves the first three characters of the pid attribute of a product document:

SELECT XMLQUERY ('declare namespace pos="http://posample.org";
 fn:substring(/pos:product/@pid, 1, 3)'
 PASSING DESCRIPTION)
FROM T1;

Related information
Descriptions of XQuery functions
The XQuery functions are a subset of the XPath 2.0 and XQuery 1.0 functions and operators.

Path expressions
Path expressions locate nodes within an XML tree. Path expressions in XQuery are based on the syntax of
XPath 2.0.

A path expression consists of a series of one or more steps that are separated by a slash character (/)
or two slash characters (//). The path can begin with a slash character (/), two slash characters(//), or a
step. Two slash characters (//) in a path expression are expanded as /descendant-or-self::node()/ , which
leaves a sequence of steps separated by a slash character (/). A step generates a sequence of items. The
steps in a path expression are evaluated from left to right. The sequence of items that a step generates
are used as context nodes for the step that follows. For example, in the expression description/name,
the first step generates a sequence of nodes that includes all description elements. The final step
evaluates the name element once for each description item in the sequence. Each time a name
element is evaluated, it is evaluated with a different focus, until all name elements have been evaluated.
The sequences that result from each evaluation of the step are combined, and duplicate nodes are
eliminated based on node identity.

A slash character (/) at the beginning of a path expression means that the path is to begin at the root node
of the tree that contains the context node. That root node must be a document node.

Restriction: In Db2, XQuery path expressions cannot contain the comma operator.

Recommendation: Because the slash character can be used as both an operator and an operand, use
parentheses to clarify the meaning of the slash character when it is used as the first character of
an operator. For example, to specify an empty path expression as the left operand of a multiplication
operation use (/)*5 instead of /*5. The later expression causes an error. Because path expressions have
the higher precedence, Db2 interprets this expression as a path expression with a wildcard for a name
test (/*) that is followed by the token 5.

Two slash characters (//) at the beginning of a path expression establishes an initial node sequence that
contains the root of the tree in which the context node is found and all nodes descended from this root.
This node sequence is used as the input to subsequent steps in the path expression. That root node must
be a document node.

The value of the path expression is the combined sequence of items that results from the final step in the
path. This value is a sequence of nodes or an atomic value. A path expression that returns a mixture of
nodes and atomic values results in an error.

A step consists of an axis step or a filter expression.

Syntax
path-expression

192 Db2 11 for z/OS: pureXML Guide

/

//

step

/ step

// step

step
filter-expression

axis-step

Example
Use a path expression to determine which stocks have at least one bid for which the price is greater than
the price of some offer on that stock.

//stock[bid/xs:double(price) > offer/price]/@stock_id

Related concepts
XMLEXISTS predicate for querying XML data
The XMLEXISTS predicate can be used to restrict the set of rows that a query returns, based on the values
in XML columns.

Axis steps
An axis step consists of three parts: an optional axis, a node test, and zero or more predicates.

The node test specifies the criteria used to select nodes. The predicates filter the sequence that is
returned by the axis step.

The result of an axis step is always a sequence of zero or more nodes, and these nodes are returned in
document order. An axis step can be either a forward step, which starts at the context node and moves
down through the XML tree, or a reverse step, which starts at the context node and moves up through the
XML tree. If the context item is not a node, then the expression results in a type error.

The unabbreviated syntax for an axis step consists of an axis name and node test that are separated
by a double colon. The syntax of an axis expression can be abbreviated by omitting the axis and using
shorthand notations.

Syntax
axis-step

axis xmlname-test

xmlkind-test predicate-list

axis
child ::

@

attribute ::

descendant ::

self ::

descendant-or-self ::

parent ::

xmlname-test

Chapter 10. XQuery prologs and expressions 193

xml-qualified-name

xml-wildcard

xml-wildcard
*

xml-nsprefix:*

*:xml-ncame

xmlkind-test
document-node (

element (name

*

)

)

element (
name

*

)

attribute (
name

*

)

processing instruction (xml-ncname

processing-instruction-literal-string

)

comment ()

text ()

node ()

predicate-list

[expression]

Example

In the following example, child is the name of the axis and price is the name of the element nodes to
be selected on this axis.

child::price

The axis step in this example selects all price elements that are children of the context node.

Related reference
Abbreviated syntax for path expressions
XQuery provides an abbreviated syntax for expressing axes in path expressions.
Node tests
A node test is a condition that must be true for each node that is selected by an axis step. The node test
can be expressed as a name test or a kind test. A name test selects nodes based on the name of the node.
A kind test selects nodes based on the kind of node.
Predicates

194 Db2 11 for z/OS: pureXML Guide

A predicate consists of an expression, called a predicate expression, that is enclosed in square brackets
([]). A predicate filters a sequence by retaining some items and discarding others.

Axes
An axis is an optional part of an axis step that specifies a direction of movement through an XML
document. XQuery supports all the axes except the optional axes that are defined by XQuery.

Table 36 on page 195 describes the axes that are supported in XQuery.

Table 36. Supported axes in XQuery

Axis Description Notes

child Returns the children of the context node.
This axis is the default.

Document nodes and element nodes are
the only nodes that have children. If the
context node is any other kind of node, or
if the context node is an empty document
or element node, then the child axis is
an empty sequence. The children of a
document node or element node may be
element, processing instruction, comment,
or text nodes. Attribute and document
nodes can never appear as children.

descendant Returns the descendants of the context
node (the children, the children of the
children, and so on).

attribute Returns the attributes of the context node. This axis is empty if the context node is not
an element node.

self Returns the context node only.

descendant-
or-self

Returns the context node and the
descendants of the context node.

parent Returns the parent of the context node, or
an empty sequence if the context node has
no parent.

An element node can be the parent of an
attribute node even though an attribute
node is never a child of an element node.

Important: XQuery does not support the full axis feature of XQuery.

An axis can be either a forward or reverse axis. A forward axis contains the context node and nodes that
are after the context node in document order. A reverse axis contains the context node and nodes that
are before the context node in document order. In XQuery, the forward axes include: child, descendant,
attribute, self, and descendant-or-self. The only supported reverse axis is the parent axis.

When an axis step selects a sequence of nodes, each node is assigned a context position that
corresponds to its position in the sequence. If the axis is a forward axis, context positions are assigned to
the nodes in document order, starting with 1. If the axis is a reverse axis, context positions are assigned to
the nodes in reverse document order, starting with 1.

Related reference
Abbreviated syntax for path expressions

Chapter 10. XQuery prologs and expressions 195

XQuery provides an abbreviated syntax for expressing axes in path expressions.

Node tests
A node test is a condition that must be true for each node that is selected by an axis step. The node test
can be expressed as a name test or a kind test. A name test selects nodes based on the name of the node.
A kind test selects nodes based on the kind of node.

Name tests
A name test consists of a QName or a wildcard. When a name test is specified in an axis step, the step
selects the nodes on the specified axis that match the QName or wildcard. If the name test is specified on
the attribute axis, the step selects any attributes that match the name test. Otherwise, on all other axes,
the step selects any elements that match the name test. For the QNames to match, the expanded QName
of the node must be equal (on a codepoint basis) to the expanded QName that is specified in the name
test. Two expanded QNames are equal if their namespace URIs are equal and their local names are equal
(even if their namespace prefixes are not equal).

Important: Any prefix that is specified in a name test must correspond to one of the statically known
namespaces for the expression. For name tests that are performed on the attribute axis, unprefixed
QNames have no namespace URI. For name tests that are performed on all other axes, unprefixed
QNames have the namespace URI of the default element namespace.

Table 37 on page 196 describes the name tests that are supported in XQuery.

Table 37. Supported name tests in XQuery

Test Description Examples

QName Matches any nodes (on the specified axis)
whose QName is equal to the specified
QName. If the axis is an attribute axis,
this test matches attribute nodes that are
equal to the specified QName. On all other
axes, this test matches element nodes
that are equal to the specified QName.

In the expression child::para, the
name test para selects all of the para
elements on the child axis.

* Matches all nodes on the specified axis.
If the axis is an attribute axis, this test
matches all attribute nodes. On all other
axes, this test matches all element nodes.

In the expression, child::*, the name
test * matches all elements on the child
axis.

Kind tests
When a kind test is specified in an axis step, the step selects only those nodes on the specified axis that
match the kind test. Table 38 on page 196 describes the kind tests that are supported in XQuery.

Table 38. Supported kind tests in XQuery

Test Description Examples

node() Matches any node on the specified
axis.

In the expression child::node(),
the kind test node() selects any
nodes on the child axis.

text() Matches any text node on the
specified axis.

In the expression child::text(),
the kind test text() selects any text
nodes on the child axis.

196 Db2 11 for z/OS: pureXML Guide

Table 38. Supported kind tests in XQuery (continued)

Test Description Examples

comment() Matches any comment node on the
specified axis.

In the expression
child::comment(), the kind test
comment() selects any comment
nodes on the child axis.

processing-instruction(NCName) Matches any processing-instruction
node (on the specified axis) whose
name (called its "PITarget" in
XML) matches the NCName that is
specified in this name test.

In the expression
child::processing-
instruction(xml-
stylesheet), the kind test
processing-
instruction(xml-
stylesheet) selects any
processing instruction nodes on the
child axis whose PITarget is xml-
stylesheet.

processing-
instruction(StringLiteral)

Matches any processing-instruction
node (on the specified axis) whose
name matches the string literal that
is specified in this test.

This node test provides backwards
compatibility with XQuery 1.0.

In the expression
child::processing-
instruction("xml-
stylesheet"), the kind test
processing-
instruction("xml-
stylesheet") selects any
processing instruction nodes on the
child axis whose PITarget is xml-
stylesheet.

element() Matches any element node on the
specified axis.

In the expression
child::element(), the kind test
element() selects any element
nodes on the child axis.

element(QName) Matches any element node (on the
specified axis) whose name matches
the qualified name that is specified in
this test.

In the expression
child::element("price"), the
kind test element("price")
selects any element nodes on the
child axis whose name is price.

element(*) Matches any element node on the
specified axis.

In the expression
child::element(*), the kind test
element(*) selects any element
nodes on the child axis.

attribute() Matches any attribute node on the
specified axis.

In the expression
child::attribute(), the kind
test attribute() selects any
attribute nodes on the child axis.

attribute(QName) Matches any attribute node (on the
specified axis) whose name matches
the qualified name that is specified in
this test.

In the expression
child::attribute("price"),
the kind test attribute("price")
selects any attribute nodes on the
child axis whose name is price.

Chapter 10. XQuery prologs and expressions 197

Table 38. Supported kind tests in XQuery (continued)

Test Description Examples

attribute(*) Matches any attribute node on the
specified axis.

In the expression
child::attribute(*), the kind
test attribute(*) selects any
attribute nodes on the child axis.

document-node() Matches any document node on the
specified axis.

In the expression
child::document-node(), the
kind test document-node() selects
any document nodes on the child
axis.

document-
node(element(QName))

Matches any document node on the
specified axis that has only one
element node (on the specified axis),
and the name of the node matches
the qualified name that is specified in
this test.

In the
expression child::document-
node(element("price")),
the kind test document-
node(element("price")) selects
any document nodes on the child
axis that have a single element
whose name is price.

document-node(element(*)) Matches any document node on
the specified axis that has element
nodes.

In the
expression child::document-
node(element(*)), the kind test
document-node(element(*))
selects any document nodes on the
child axis that have element nodes.

Related concepts
Nodes
A node conforms to one of the types of nodes that are defined for XQuery. These node types include:
document, element, attribute, text, processing instruction, comment, and namespace nodes.
Related reference
Axis steps
An axis step consists of three parts: an optional axis, a node test, and zero or more predicates.

Predicates
A predicate consists of an expression, called a predicate expression, that is enclosed in square brackets
([]). A predicate filters a sequence by retaining some items and discarding others.

The predicate expression is evaluated once for each item in the sequence. The result of the predicate
expression is an xs:boolean value called the predicate truth value. Those items for which the predicate
truth value is true are retained, and those for which the predicate truth value is false are discarded. The
value of the predicate expression must not be a numeric value. For all other data types, the predicate
truth value is the effective boolean value of the predicate expression. The effective boolean value is
false if the predicate expression evaluates to an empty sequence or false. Otherwise, the effective
boolean value is true.

Examples

The following examples are axis steps that include predicates:

• descendant::phone[attribute::type = "work"] selects all the descendants of the context
node that are elements named phone and whose type attribute has the value "work".

• child::address[prov-state][pcode-zip] selects all the address children of the context node
that have a prov-state child element and a pcode-zip child element.

198 Db2 11 for z/OS: pureXML Guide

Related reference
xs:boolean
The data type xs:boolean supports the mathematical concept of binary-valued logic: true or false.

Abbreviated syntax for path expressions
XQuery provides an abbreviated syntax for expressing axes in path expressions.

Table 39 on page 199 describes the abbreviations that are allowed in path expressions.

Table 39. Abbreviated syntax for path expressions

Abbreviated syntax Description

no axis specified Shorthand abbreviation for child::, except when the axis step
specifies attribute() for the node test. When the axis step
specifies an attribute test, an omitted axis is shorthand for
attribute::.

@ Shorthand abbreviation for attribute:: .

// Shorthand abbreviation for /descendant-or-self::node()/,
except when this abbreviation appears at the beginning of the path
expression.

When this abbreviation appears at the beginning of the path
expression, the axis step selects an initial node sequence that
contains the root of the tree in which the context node is found, plus
all nodes that are descended from this root. This expression raises an
error if the root node is not a document node.

.. Shorthand abbreviation for parent::node().

Examples of abbreviated and unabbreviated syntax

Table 40 on page 199 provides examples of abbreviated and unabbreviated syntax.

Table 40. Unabbreviated and abbreviated syntax compared

Unabbreviated syntax Abbreviated syntax Result

child::para para Selects the para elements
that are children of the context
node.

child::* * Selects all elements that are
children of the context node.

child::text() text() Selects all text nodes that are
children of the context node.

child::node() node() Selects all of the children
of the context node. This
expression returns no attribute
nodes, because attributes are
not children of a node.

attribute::name @name Selects the name attribute of
the context node

attribute::* @* Selects all of the attributes of
the context node.

child::para[attribute::type="warning"] para[@type="warning"] Selects all para children of
the context node that have a
type attribute with the value
warning.

Chapter 10. XQuery prologs and expressions 199

Table 40. Unabbreviated and abbreviated syntax compared (continued)

Unabbreviated syntax Abbreviated syntax Result

child::chapter[child::title="Introduction"] chapter[title="Introduction"
]

Selects the chapter children
of the context node that have
one or more title children
whose typed value is equal to
the string Introduction.

child::chapter[child::title] chapter[title] Selects the chapter children
of the context node that have
one or more title children.

Related concepts
Nodes
A node conforms to one of the types of nodes that are defined for XQuery. These node types include:
document, element, attribute, text, processing instruction, comment, and namespace nodes.

Sequence expressions
Sequence expressions construct, filter, and combine sequences of items. Sequences are never nested.
For example, combining the values 1, (2, 3), and () into a single sequence results in the sequence (1, 2,
3).

Expressions that construct sequences
You can use the comma operator to construct sequences.

Comma operators
To construct a sequence by using the comma operator, specify two or more operands (expressions) that
are separated by commas. When XQuery evaluates the sequence expression, it evaluates the operands of
each comma operator and concatenates the resulting sequences, in order, into a single result sequence.
For example, the following expression results in a sequence that contains five integers:

(15, 1, 3, 5, 7)

Restriction: The operands (expressions) of the comma operator cannot contain an FLWOR expression.

Restriction: XQuery path expressions cannot contain the comma operator.

A sequence can contain duplicate atomic values and nodes. However, a sequence is never an item in
another sequence. When a new sequence is created by concatenating two or more input sequences, the
new sequence contains all of the items of the input sequences. The length of the sequence is the sum of
the lengths of the input sequences.

Examples: The following expressions use the comma operator for sequence construction:

• This expression combines four sequences of length one, two, zero, and two, respectively, into a single
sequence of length five. The result of this expression is the sequence 10, 1, 2, 3, 4.

(10, (1, 2), (), (3, 4))

• The result of this expression is a sequence that contains all salary elements that are children of the
context node, followed by all bonus elements that are children of the context node.

(salary, bonus)

• Assuming that the variable $price is bound to the value 10.50, the result of this expression is the
sequence 10.50, 10.50.

($price, $price)

200 Db2 11 for z/OS: pureXML Guide

Filter expressions
A filter expression consists of a primary expression that is followed by zero or more predicates. The
predicates, if present, filter the result of the primary expression.

The result of a filter expression consists of all the items that are returned by the primary expression for
which all the predicates are true. If no predicates are specified, the result is the result of the primary
expression. This result can contain nodes, atomic values, or a combination of nodes and atomic values.
The ordering of the items that are returned by a filter expression is the same as their order in the result
of the primary expression. Context positions are assigned to items based on their ordinal position in the
result sequence. The first context position is 1.

Restriction: An XPath step node or XPath predicate cannot contain FLWOR expressions, conditional
expressions, or comma operators.

Syntax
filter-expression

primary-expression

predicate-list

predicate-list

[expression]

Examples

The following example uses a filter expression that returns a value if there is a customerinfo element
anywhere in the document that is specified by $x:

SELECT XMLQUERY ('declare default element namespace "http://posample.org";
 $x[.//customerinfo]'
 PASSING PASSING INFO AS "x")
FROM CUSTOMER

Arithmetic expressions
Arithmetic expressions perform operations that involve addition, subtraction, multiplication, division, and
modulus.

The following table describes the arithmetic operators and lists them in order of operator precedence
from highest to lowest. Unary operators have a higher precedence than binary operators unless
parentheses are used to force the evaluation of the binary operator.

Table 41. Arithmetic operators in XQuery

Operator Purpose Associativity

-(unary), +
(unary)

negates value of operand, maintains value
of operand

right-to-left

*, div, idiv,
mod

multiplication, division, integer division,
modulus

left-to-right

+, - addition, subtraction left-to-right

Note: A subtraction operator must be preceded by whitespace if the operator could otherwise be
interpreted as part of a previous token. For example, a-b is interpreted as a name, but a - b and a -b
are interpreted as arithmetic operations.

Chapter 10. XQuery prologs and expressions 201

Restriction: The operand of an arithmetic operator cannot contain an FLWOR expression.

The result of an arithmetic expression is one of the following items:

• A numeric value
• A date or time value
• A duration value
• An empty sequence
• An error

XQuery uses the following process to evaluate an arithmetic expression.

1. Atomizes each operand into a sequence of atomic values.
2. Uses the following rules to evaluate the operands in the arithmetic expression:

• If the atomized operand is an empty sequence, the result of the arithmetic expression is an empty
sequence.

• If the atomized operand is a sequence that contains more than one value, an error is returned.
• If the atomized operand is an untyped atomic value (xs:untypedAtomic), XQuery casts the value to

xs:double. If the cast fails, XQuery returns an error.
3. If the types of the operands are a valid combination for the arithmetic operator, XQuery applies the

operator to the atomized values. The result of this operation is an atomic value or a dynamic error (for
example, an error might result from dividing by zero).

4. If the types of the operands are not a valid combination for the arithmetic operator, XQuery raises a
type error.

The following table identifies valid combinations of types for arithmetic operators. In this table, the letter
A represents the first operand in the expression, and the letter B represents the second operand. The
term numeric denotes the types xs:integer, xs:decimal, xs:double, or any types derived from one of these
types. If the result type of an operator is listed as numeric, the result type will be the first type in
the ordered list (xs:integer, xs:decimal, xs:double) into which all operands can be converted by subtype
substitution and type promotion.

Table 42. Valid types for operands of arithmetic expressions

Operator with operands Type of operand A Type of operand B Result type

A + B numeric numeric numeric

xs:date xs:yearMonthDuration xs:date

xs:yearMonthDuration xs:date xs:date

xs:date xs:dayTimeDuration xs:date

xs:dayTimeDuration xs:date xs:date

xs:time xs:dayTimeDuration xs:time

xs:dayTimeDuration xs:time xs:time

xs:dateTime xs:yearMonthDuration xs:dateTime

xs:yearMonthDuration xs:dateTime xs:dateTime

xs:dateTime xs:dayTimeDuration xs:dateTime

xs:dayTimeDuration xs:dateTime xs:dateTime

xs:yearMonthDuration xs:yearMonthDuration xs:yearMonthDuration

xs:dayTimeDuration xs:dayTimeDuration xs:dayTimeDuration

202 Db2 11 for z/OS: pureXML Guide

Table 42. Valid types for operands of arithmetic expressions (continued)

Operator with operands Type of operand A Type of operand B Result type

A - B numeric numeric numeric

xs:date xs:date xs:dayTimeDuration

xs:date xs:yearMonthDuration xs:date

xs:date xs:dayTimeDuration xs:date

xs:time xs:time xs:dayTimeDuration

xs:time xs:dayTimeDuration xs:time

xs:dateTime xs:dateTime xs:dayTimeDuration

xs:dateTime xs:yearMonthDuration xs:dateTime

xs:dateTime xs:dayTimeDuration xs:dateTime

xs:yearMonthDuration xs:yearMonthDuration xs:yearMonthDuration

xs:dayTimeDuration xs:dayTimeDuration xs:dayTimeDuration

A * B numeric numeric numeric

xs:yearMonthDuration numeric xs:yearMonthDuration

numeric xs:yearMonthDuration xs:yearMonthDuration

xs:dayTimeDuration numeric xs:dayTimeDuration

numeric xs:dayTimeDuration xs:dayTimeDuration

A idiv B numeric numeric xs:integer

A div B numeric numeric numeric; but xs:decimal
if both operands are
xs:integer

xs:yearMonthDuration numeric xs:yearMonthDuration

xs:dayTimeDuration numeric xs:dayTimeDuration

xs:yearMonthDuration xs:yearMonthDuration xs:decimal

xs:dayTimeDuration xs:dayTimeDuration xs:decimal

A mod B numeric numeric numeric

Syntax
arithmetic expression

Multiplicative-expression

+ Multiplicative-expression

? Multiplicative-expression

Chapter 10. XQuery prologs and expressions 203

multiplicative expression

+

?

path_expression

*

div

idiv

mod

+

?

path_expression

Examples

The following query uses an arithmetic expression to calculate the amount that buyers pay in taxes on a
product, at a rate of 8.25%, and selects the description elements for which the tax is greater than one unit
of currency.

SELECT XMLQUERY ('declare namespace pos="http://posample.org";
 /pos:product/description[price * .0825 > 1]'
 PASSING DESCRIPTION)
FROM T1

The following query subtracts two xs:date values, which results in the xs:yearMonthDuration value
P8559D:

SELECT XMLQUERY(' xs:date("2005-10-10")
 - xs:date("1982-05-05")')
 FROM SYSIBM.SYSDUMMY1

Related reference
Parenthesized expression
Parentheses can be used to enforce a particular order of evaluation in expressions that contain multiple
operators.

Comparison expressions
Comparison expressions compare two values. XQuery provides general comparisons, value comparisons,
and node comparisons.

Value comparisons
Value comparisons compare two atomic values. The value comparison operators include eq, ne, lt, le,
gt, and ge.

The following table describes these operators.

Table 43. Value comparison operators in XQuery

Operator Purpose

eq Returns true if the first value is equal to the second value.

ne Returns true if the first value is not equal to the second value.

lt Returns true if the first value is less than the second value.

204 Db2 11 for z/OS: pureXML Guide

Table 43. Value comparison operators in XQuery (continued)

Operator Purpose

le Returns true if the first value is less than or equal to the second value.

gt Returns true if the first value is greater than the second value.

ge Returns true if the first value is greater than or equal to the second value.

Restriction: The operand of a value comparison cannot contain an FLWOR expression.

Two values can be compared if they have the same type or if the type of one operand is a subtype of the
other operand's type. Two operands of numeric types (types xs:integer, xs:decimal, xs:double, and types
derived from these) can be compared.

Special values: For xs:double values, positive zero and negative zero compare equal. INF equals INF,
and -INF equals -INF. NaN does not equal itself. Positive infinity is greater than all other non-NaN values;
negative infinity is less than all other non-NaN values. NaN ne NaN is true, and any other comparison
involving a NaN value is false.

The result of a value comparison can be a boolean value, an empty sequence, or an error. When a value
comparison is evaluated, each operand is atomized (converted into an atomic value), and the following
rules are applied:

• If either atomized operand is an empty sequence, the result of the value comparison is an empty
sequence.

• If either atomized operand is a sequence that contains more than one value, an error is returned.
• If either atomized operand is an untyped atomic value (xs:untypedAtomic), that value is cast to

xs:string.

Casting values of type xs:untypedAtomic to xs:string allows value comparisons to be transitive. In
contrast, general comparisons follow a different rule for casting untyped data and are therefore not
transitive.

• If the types of the operands, after evaluation, are a valid combination for the operator, the operator is
applied to the atomized operands, and the result of the comparison is either true or false. If the types of
the operands are not a valid combination for the comparison operator, an error is returned.

The following types can be compared with value comparison operators. The term numeric refers to the
types xs:integer, xs:decimal, xs:double, and any type derived from one of these types. During comparisons
that involve numeric values, subtype substitution and numeric type promotion are used to convert the
operands into the first type in the ordered list (xs:integer, xs:decimal, xs:double) into which all operands
can be converted.

• Numeric
• xs:boolean
• xs:string
• xs:date
• xs:time
• xs:dateTime
• xs:yearMonthDuration
• xs:dayTimeDuration
• xs:duration (eq and ne only)

Examples

• The following comparison atomizes the nodes that are returned by the expression $book/author. The
comparison is true only if the result of atomization is the value "Kennedy" as an instance of xs:string or

Chapter 10. XQuery prologs and expressions 205

xs:untypedAtomic. If the result of atomization is a sequence that contains more than one value, an error
is returned

$book1/author eq "Kennedy"

• The following path expression contains a predicate that selects products whose weight is greater than
100. For any product that does not have a weight subelement, the value of the predicate is the empty
sequence, and the product is not selected:

//product[xs:decimal(weight) gt 100]

• The following comparisons are true because, in each case, the two constructed nodes have the same
value after atomization, even though they have different identities or names:

<a>5 eq <a>5
<a>5 eq 5

General comparisons in XQuery
General comparisons compare two sequences of any length to determine if a comparison is true for at
least one item in both sequences. The general comparison operators include =, !=, <, <=, >, and >=.

The following table describes these operators, listed in order of operator precedence from highest to
lowest.

Table 44. General comparison operators in XQuery

Operator Purpose

= Returns true if any value in the first sequence is equal to any value in the second
sequence.

!= Returns true if any value in the first sequence is not equal to any value in the second
sequence.

< Returns true if any value in the first sequence is less than any value in the second
sequence.

<= Returns true if any value in the first sequence is less than or equal to any value in the
second sequence.

> Returns true if any value in the first sequence is greater than any value in the second
sequence.

>= Returns true if any value in the first sequence is greater than or equal to any value in
the second sequence.

Restriction: The operand of a general comparison cannot contain an FLWOR expression.

The result of a general comparison expression is a boolean value or an error. XQuery uses the following
process to evaluate a general comparison expression.

1. Atomizes each operand into a sequence of atomic values.
2. Compares each of the values in the first sequence to each of the values in the second sequence. For

each comparison:

• If one of the atomic values is an instance of xs:untypedAtomic and the other is an instance
of a numeric type (xs:integer, xs:decimal, or xs:double), the untyped value is cast to the type
xs:double.

• If one of the atomic values is an instance of xs:untypedAtomic and the other is an instance
of xs:untypedAtomic or xs:string, the xs:untypedAtomic values are cast to the type
xs:string.

206 Db2 11 for z/OS: pureXML Guide

• If one of the atomic values is an instance of xs:untypedAtomic and the other is not an instance
of xs:string, xs:untypedAtomic, or any numeric type, the xs:untypedAtomic value is cast to
the dynamic type of the other value.

3. If at least one of the values in the first sequence and at least one of the values in the second sequence
meet the conditions of the comparison, the general comparison is true.

Syntax
comparison expression

arithmetic-expression

=

!=

<

>

<=

>=

arithmetic-expression

Examples

The following query uses a general comparison expression to find the descriptions of products that cost
less than 20 units.

SELECT XMLQUERY ('declare namespace pos="http://posample.org";
 /pos:product/description[price < 20]'
 PASSING DESCRIPTION)
FROM T1;

Related concepts
XMLQUERY function for retrieval of portions of an XML document
XMLQUERY is an SQL scalar function that lets you execute an XQuery expression from within an SQL
context.
Related reference
xs:date
The date type xs:date represents an interval of exactly one day that begins on the first moment of a given
day.
xs:dateTime
The data type xs:dateTime represents an instant in time.
xs:dayTimeDuration
The data type xs:dayTimeDuration represents a duration of time that is expressed by days, hours,
minutes, and seconds components. xs:dayTimeDuration is derived from data type xs:duration.
xs:decimal
The data type xs:decimal represents a subset of the real numbers that can be represented by decimal
numerals.
xs:double
The data type xs:double is supported in XQuery by the IEEE 64-bit decimal floating point.
xs:duration
The data type xs:duration represents a duration of time that is expressed by the Gregorian year, month,
day, hour, minute, and second components. xs:duration is derived from data type xs:anyAtomicType.
xs:integer
The data type xs:integer represents a decimal number that does not include a trailing decimal point.
The base type of xs:integer is xs:decimal.
xs:string

Chapter 10. XQuery prologs and expressions 207

The data type xs:string represents character strings in XML. Because xs:string is a simple type, it
cannot contain any children.
xs:time
The data type xs:time represents an instant of time that recurs every day.
xs:untypedAtomic
The data type xs:untypedAtomic serves as a special type annotation to indicate atomic values that
have not been validated by an XML schema or a DTD.
xs:yearMonthDuration
The data type xs:yearMonthDuration represents a duration of time that is expressed by the Gregorian year
and month components. xs:yearMonthDuration is derived from data type xs:duration.

Node comparisons
Node comparisons compare two nodes. Nodes can be compared to determine if they share the same
identity or if one node precedes or follows another node in document order.

The following table describes the node comparison operators that are available in XQuery.

Table 45. Node comparison operators in XQuery

Operator Purpose

is Returns true if the two nodes that are compared have the same identity.

<< Returns true if the first operand node precedes the second operand node in
document order.

>> Returns true if the first operand node follows the second operand node in document
order.

Restriction: The operand of a node comparison cannot contain an FLWOR expression.

The result of a node comparison is either a Boolean value, an empty sequence, or an error. The result of a
node comparison is defined by the following rules:

• Each operand must be either a single node or an empty sequence; otherwise, an error is returned.
• If either operand is an empty sequence, the result of the comparison is an empty sequence.
• A comparison that uses the is operator is true when the two nodes that are compared have the same

identity; otherwise, the comparison is false.
• A comparison that uses the << operator returns true when the left operand node precedes the right

operand node in document order; otherwise, the comparison returns false. If the nodes are from two
different documents, the document ID determines the precedence.

• A comparison that uses the >> operator returns true when the left operand node follows the right
operand node in document order; otherwise, the comparison returns false. If the nodes are from two
different documents, the document ID determines the precedence.

Examples

• The following comparison is true only if both the left operand and right operand evaluate to exactly the
same single node:

/books/book[isbn="1558604820"] is /books/book[call="QA76.9 C3845"]

• The following comparison is false because each constructed node has its own identity:

<a>5 is <a>5

• The following comparison is true only if the node that is identified by the left operand occurs before the
node that is identified by the right operand in document order:

208 Db2 11 for z/OS: pureXML Guide

/transactions/purchase[parcel="28-451"] << /transactions/sale[parcel="33-870"]

Logical expressions
Logical expressions return the boolean value true if both of two expressions are true, or if one or both of
two expressions are true. The operators that are used in logical expressions include and and or.

The following table describes these operators, listed in order of operator precedence from highest to
lowest.

Table 46. Logical expression operators in XQuery

Operator Purpose

and Returns true if both expressions are true.

or Returns true if one or both expressions are true.

Restriction: The operand of a logical expression cannot contain an FLWOR expression.

The result of a logical expression is a boolean value or an error. XQuery uses the following process to
evaluate a logical expression.

1. Determines the effective boolean value (EBV) of each operand.
2. Applies the operator to the effective boolean values of the operands. The result is a boolean value or

an error. Table 47 on page 209 shows the results that are returned by a logical expression based on
the EBV of its operands and any errors that are encountered during the evaluation of an operand.

Table 47. Results of logical expressions based on effective boolean values (EBVs) of operands

EBV of operand 1 Operator EBV of operand 2 Result

true and true true

true and false false

false and true false

false and false false

true and error error

error and true error

false and error false or error

error and false false or error

error and error error

true or true true

false or false false

true or false true

false or true true

true or error true or error

error or true true or error

false or error error

error or false error

error or error error

Chapter 10. XQuery prologs and expressions 209

Syntax
logical expression

expression

and

or

expression

Examples

The following query uses a logical expression to retrieve records from a table for 22-inch snow shovels or
24-inch snow shovels.

SELECT XMLQUERY ('declare namespace pos="http://posample.org";
 /pos:product/description[name = "Snow Shovel, Deluxe 24"""
 or name = "Snow Shovel, Basic 22"""]'
 PASSING DESCRIPTION)
FROM T1;

Related reference
fn:boolean function
The fn:boolean function returns the effective boolean value of a sequence.
fn:not function
The fn:not function returns false if the effective boolean value of an item is true. fn:not returns true if the
effective boolean value of an item is false.

XQuery constructors
XQuery constructors create XML structures within a query. .

Enclosed expressions in constructors
Enclosed expressions are used in constructors to provide computed values for element and attribute
content. These expressions are evaluated and replaced by their value when the constructor is processed.
Enclosed expressions are enclosed in curly braces ({}) to distinguish them from literal text.

Enclosed expressions can be used in the following constructors to provide computed values:

• Direct element constructors:

– An attribute value in the start tag of a direct element constructor can include an enclosed expression.
– The content of a direct element constructor can include an enclosed expression that computes both

the content and the attributes of the constructed node.
• Document node constructors:

– An enclosed expression can be used to generate the content of the node.

For example, the following direct element constructor includes an enclosed expression:

<example>
 <p> Here is a query. </p>
 <eg> $b/title </eg>
 <p> Here is the result of the query. </p>
 <eg>{ $b/title }</eg>
</example>

When this constructor is evaluated, it might produce the following result (whitespace is added to this
example to improve readability):

210 Db2 11 for z/OS: pureXML Guide

<example>
 <p> Here is a query. </p>
 <eg> $b/title </eg>
 <p> Here is the result of the query. </p>
 <eg><title>Harold and the Purple Crayon</title></eg>
</example>

Tip: To use a curly brace as an ordinary character within the content of an element or attribute, you can
either include a pair of identical curly braces or use character references. For example, you can use the
pair {{ to represent the character {. Likewise, you can use the pair }} to represent }. Alternatively, you can
use the character references { and } to denote curly brace characters. A single left curly
brace ({) is interpreted as the beginning delimiter for an enclosed expression. A single right curly brace (})
without a matching left curly brace results in an error.

Direct element constructors
Direct element constructors use an XML-like notation to create element nodes. The constructed node can
be a simple element or a complex element that contains attributes, text content, and nested elements.

The result of a direct element constructor is a new element node that has its own node identity. All of
the attribute and descendant nodes of the new element node are also new nodes that have their own
identities.

Syntax
< element-name

attribute-name = '

"

attribute-value '

"

namespace-declaration-attribute

/>

>

element-content

</ element-name >

namespace-declaration-attribute
xmlns:  prefix-to-bind

xmlns

= URI-literal

element-name
An XML qualified name (QName) that represents the name of the element to construct. The name
that is used for element-name in the end tag must exactly match the name that is used in the
corresponding start tag, including the prefix or absence of a prefix. If element-name includes
a namespace prefix, the prefix is resolved to a namespace URI by using the statically known
namespaces. If element-name has no namespace prefix, the name is implicitly qualified by the default
element namespace. The expanded QName that results from evaluating element-name becomes the
name of the constructed element node.

attribute-name
A QName that represents the name of the attribute to construct. If attribute-name includes a
namespace prefix, the prefix is resolved to a namespace URI by using the statically known
namespaces. If attribute-name has no namespace prefix, the attribute is in no namespace. The
expanded QName that results from evaluating attribute-name becomes the name of the constructed

Chapter 10. XQuery prologs and expressions 211

attribute node. The expanded QName of each attribute must be unique, or the expression results in a
error.

Each attribute in a direct element constructor creates a new attribute node, with its own node identity.
The parent of the new attribute node is the constructed element node. The new attribute node has a
type annotation of xs:untypedAtomic.

attribute-value
A string of characters that specify a value for the attribute. The attribute value can contain enclosed
expressions (expressions that are enclosed in curly braces) that are evaluated and replaced by
their value when the element constructor is processed. Predefined entity references and character
references are also valid and are replaced by the characters that they represent. The following table
lists special characters that are valid within attribute-value, but must be represented by double
characters or an entity reference.

Table 48. Representation of special characters in attribute values

Character Representation required in attribute values

{ two open curly braces ({{)

} two closed curly braces (}})

< <

& &

" " or two double quotation marks (""), if the delimiters of the attribute value
are double quotation marks

' ' or two single quotation marks (''), if the delimiters of the attribute value are
single quotation marks

xmlns
The word that begins a namespace declaration attribute. When specified as a prefix in a QName,
xmlns indicates that the value of prefix-to-bind will be bound to the URI that is specified by URI-
literal. This namespace binding is added to the statically known namespaces for the constructor
expression, and for all of the expressions that are nested inside of the expression, unless the binding
is overridden by a nested namespace declaration attribute. For example, the namespace declaration
attribute xmlns:metric = "http://example.org/metric/units" binds the prefix metric to
the namespace http://example.org/metric/units.

When specified as the complete QName with no prefix, xmlns indicates that the default element
namespace is set to the value of URI-literal. This default element namespace is in effect for this
constructor expression and for all expressions that are nested inside of the constructor expression,
unless the declaration is overridden by a nested namespace declaration attribute. For example, the
namespace declaration attribute xmlns = "http://example.org/animals" sets the default
element namespace to http://example.org/animals.

prefix-to-bind
The prefix that is to be bound to the URI that is specified for URI-literal. The value of prefix-to-bind
cannot be xml or xmlns. Specification of either of these values results in an error.

URI-literal
A string literal (a sequence of zero or more characters that is enclosed in single quotation marks or
double quotation marks) that represents a URI. The string literal value must be a valid URI. The value
of URI-literal can be a zero-length string only when the namespace declaration attribute is used to set
the default element namespace. Otherwise, specification of a zero-length string for URI-literal results
in an error.

element-content
The content of the direct element constructor. The content consists of everything between the start
tag and end tag of the constructor. The boundary-space declaration in the prolog controls the way in
which boundary whitespace is handled in element constructors. The resulting content sequence is a

212 Db2 11 for z/OS: pureXML Guide

concatenation of the content entities. Any resulting adjacent text characters, including text resulting
from enclosed expressions, are merged into a single text node. Any resulting attribute nodes must
come before any other content in the resulting content sequence.

element-content can consist of any of the following content:
Text characters

Text characters create text nodes. Adjacent text nodes are merged into a single text node. Line
endings within sequences of characters are normalized according to the rules for end-of-line
handling that are specified for XML 1.0. The following table lists special characters that are valid
within element-content, but must be represented by double characters or an entity reference.

Table 49. Representation of special characters in element content

Character Representation required in element content

{ two open curly braces ({{)

} two closed curly braces (}})

< <

& &

Nested direct constructors
Any direct constructors can be nested within direct element constructors.

CDataSections
CDataSections are specified using the following syntax: <![CDATA[contents]]>. contents is a
series of characters. The characters that are specified for contents, including special characters
such as < and &, are treated as literal characters rather than as delimiters. The sequence]]>
terminates the CDataSection and is therefore not allowed within contents.

Character references and predefined entity references
During processing, predefined entity references and character references are expanded into their
referenced strings.

Enclosed expressions
An enclosed expression is an XQuery expression that is enclosed in curly braces. For example,
{5 + 7} is an enclosed expression. The value of an enclosed expression can be any sequence
of nodes and atomic values. Enclosed expressions can be used within the content of a direct
element constructor to compute the content and the attributes of the constructed node. For each
node that is returned by an enclosed expression, a new copy is made of the node and all of its
descendants, which retain their original type annotations. Any attribute nodes that are returned by
element-content must be at the beginning of the resulting content sequence; these attribute nodes
become attributes of the constructed element. Any element, content, or processing instruction
nodes that are returned by element-content become children of the newly constructed node. Any
atomic values that are returned by element-content are converted to strings and stored in text
nodes, which become children of the constructed node. Adjacent text nodes are merged into a
single text node.

Important: Because XMLQUERY, XMLEXISTS and XMLTABLE use single quotation marks to enclose an
XQuery expression, single quotation marks (') within direct element constructors need to be replaced with
two single quotation marks ('').

Examples

• The following direct element constructor creates a book element. The book element contains complex
content that includes an attribute node, some nested element nodes, and some text nodes:

<book isbn="isbn-0060229357">
 <title>Harold and the Purple Crayon</title>
 <author>
 <first>Crockett</first>
 <last>Johnson</last>

Chapter 10. XQuery prologs and expressions 213

 </author>
</book>

• The following example demonstrates the use of a CDATA section in a direct element constructor. CDATA
sections are handled and stored as escaped text data. When the data is serialized, the contents of the
CDATA sections display as escaped text. The CDATA sections are not preserved.

SELECT XMLQUERY('
 <TEST>
 {for $i in (1,2,3)
 return <a><![CDATA[<c>CDATA TEST!!!</c>]]> }
 </TEST>')
FROM SYSIBM.SYSDUMMY1;

The SELECT statement returns results similar to these:

<?xml version="1.0" encoding="UTF8"?>
<TEST>
 <a><c>CDATA TEST!!!</c>
 <a><c>CDATA TEST!!!</c>
 <a><c>CDATA TEST!!!</c>
</TEST>

• The following examples demonstrate how element content is processed in direct element constructors:

– The following expression constructs an element node that has one child, a text node that contains the
value "1":

<a>{1}

– The following expression constructs an element node that has one child, a text node that contains the
value "1 2 3":

<a>{1, 2, 3}

– The following expression constructs an element node that has one child, a text node that contains the
value "123":

<c>{1}{2}{3}</c>

– The following expression constructs an element node that has one child, a text node that contains the
value "1 2 3":

{1, "2", "3"}

– The following expression constructs an element node that has one child, a text node that contains the
value "I saw 8 cats."

<fact>I saw {5 + 3} cats.</fact>

Namespace declaration attributes
Namespace declaration attributes are specified in the start tag of a direct element constructor.

Namespace declaration attributes are used for two purposes:

• To bind a namespace prefix to a URI
• To set the default element namespace for the constructed element node and for its attributes and

descendants

Syntactically, a namespace declaration attribute has the same form as an attribute in a direct element
constructor: the attribute is specified by a name and a value. The attribute name is a constant qualified
name (QName). The attribute value is a string literal that represents a valid URI.

A namespace declaration attribute does not cause an attribute node to be created.

Important: The name of each namespace declaration attribute in a direct element constructor must be
unique. Otherwise, the expression results in an error.

214 Db2 11 for z/OS: pureXML Guide

How a namespace prefix is bound to a URI
If the QName begins with the prefix xmlns followed by a local name, the declaration is used to bind
the namespace prefix (specified as the local name) to a URI (specified as the attribute value). For
example, the namespace declaration attribute xmlns:metric = "http://example.org/metric/
units" binds the prefix metric to the namespace http://example.org/metric/units.

When the namespace declaration attribute is processed, the prefix and URI are added to the statically
known namespaces of the constructor expression, and the new binding overrides any existing binding of
the given prefix. The prefix and URI are also added as a namespace binding to the in-scope namespaces
of the constructed element.

For example, in the following element constructor, namespace declaration attributes are used to bind the
namespace prefixes metric and english:

<box xmlns:metric = "http://example.org/metric/units"
xmlns:english = "http://example.org/english/units">
 <height> <metric:meters>3</metric:meters> </height>
 <width> <english:feet>6</english:feet> </width>
 <depth> <english:inches>18</english:inches> </depth>
</box>

How the default element namespace is set
If the QName is xmlns with no prefix, the declaration is used to set the default element namespace. For
example, the namespace declaration attribute xmlns = "http://example.org/animals" sets the
default element namespace to http://example.org/animals.

When the namespace declaration attribute is processed, the value of the attribute is interpreted as a
namespace URI. This URI specifies the default element namespace of the constructor expression, and the
new specification overrides any existing default. The URI is also added, with no prefix, to the in-scope
namespaces of the constructed element, and the new specification overrides any existing namespace
binding that has no prefix. If the namespace URI is a zero-length string, the default element namespace
of the constructor expression is set to "none".

For example, in the following direct element constructor, a namespace declaration attribute sets the
default element namespace to http://example.org/animals:

<cat xmlns = "http://example.org/animals">
 <breed>Persian</breed>
</cat>

Namespace bindings after elements are copied to constructors
When an existing element node is copied by an element constructor, the namespace bindings are resolved
in the following way:

• The copied element retains all in-scope-namespaces of the original element. The default namespace
is treated like any other namespace binding. The copied node has the same default namespace as the
original node. If the original node has no default namespace, the copy has no default namespace.

• The copied node inherits in-scope namespaces from the constructed node. If there is a naming conflict,
the namespace bindings that were copied from the original node take precedence.

Boundary whitespace in direct element constructors
Within a direct element constructor, boundary whitespace is a sequence of consecutive whitespace
characters. The sequence is delimited at each end by the start or end of the content, by a direct
constructor, or by an enclosed expression.

For example, boundary whitespace might be used in the content of the constructor to separate the end
tag of a direct constructor from the start tag of a nested element.

The following diagram shows an example of a direct element constructor, with the boundary whitespace
highlighted:

Chapter 10. XQuery prologs and expressions 215

The boundary whitespace in this example includes the following characters:

• A newline character and four space characters that occur between the start tags of the product and
description elements

• Four space characters that occur between the start tag of the description element and the enclosed
expression

• Four space characters that occur between the enclosed expression and the end tag of the
description element

• One newline character that appears after the end tag of the description element

Boundary whitespace does not include any of the following types of whitespace:

• Whitespace that is generated by an enclosed expression
• Characters that are generated by character references (for example,) or by CDataSections
• Whitespace characters that are adjacent to a character reference or a CDataSection

The boundary-space policy controls whether boundary whitespace is preserved by element constructors.
This policy is specified by a boundary-space declaration in the query prolog. If the boundary-space
declaration specifies strip, boundary whitespace is discarded. If the boundary-space declaration
specifies preserve, boundary whitespace is preserved. If no boundary-space declaration is specified,
the default behavior is to strip boundary whitespace during element construction.

Examples

• In the following example, the constructed cat element node has two child element nodes that are
named breed and color:

<cat>
 <breed>{$b}</breed>
 <color>{$c}</color>
</cat>

Because the boundary-space policy is strip by default, the whitespace that surrounds the child
elements is stripped away by the element constructor.

• In the following example, the boundary-space policy is strip. The result of the constructor is
<a>abc:

declare boundary-space strip;
<a> {"abc"}

• In the following example, the boundary-space policy is preserve. The result of the constructor is <a>
abc :

declare boundary-space preserve;
<a> {"abc"}

Because the boundary-space policy is preserve, the spaces that appear before and after the enclosed
expression is preserved by the element constructor.

• In the following example, the whitespace that surrounds z is not boundary whitespace. The whitespace
is always preserved, and the result of the constructor is <a> z abc:

<a> z {"abc"}

216 Db2 11 for z/OS: pureXML Guide

• In the following example, the whitespace characters that are generated by the character reference and
adjacent whitespace characters are preserved, regardless of the boundary-space policy. The result of
the constructor is <a> abc:

<a> {"abc"}

• In the following example, the whitespace in the enclosed expression is preserved, regardless of the
boundary-space policy, because whitespace that is generated by an enclosed expression is never
considered to be boundary whitespace. The result of the constructor is <a> :

<a>{" "}

The two spaces in the enclosed expression are preserved by the element constructor and appear
between the start tag and the end tag in the result.

Related concepts
Whitespace in XQuery
Whitespace is allowed in most XQuery expressions to improve readability even if whitespace is not part
of the syntax for the expression. Whitespace consists of space characters (U+0020), carriage returns
(U+000D), line feeds (U+000A), and tabs (U+0009).

In-scope namespaces of a constructed element
A constructed element node has an in-scope namespaces property that consists of a set of namespace
bindings. Each namespace binding associates a namespace prefix with a URI. The namespace bindings
define the set of namespace prefixes that are available for interpreting qualified names (QNames) within
the scope of an element.

Important: To understand this topic, you need to understand the difference between the following
concepts:
Statically known namespaces

Statically known namespaces is a property of an expression. This property denotes the set of
namespace bindings that are used by XQuery to resolve namespace prefixes during the processing of
the expression. These bindings are not part of the query result.

In-scope namespaces
In-scope namespaces is a property of an element node. This property denotes the set of namespace
bindings that are available to applications outside of XQuery when the element and its content are
processed. These bindings are serialized as part of the query result so that they are available to
outside applications.

The in-scope namespaces of a constructed element include all of the namespace bindings that are
created in the following ways:

• Explicitly, through namespace declaration attributes

A namespace binding is created for each namespace declaration attribute that is declared in the
following constructors:

– The current element constructor
– An enclosing direct element constructor, unless the namespace declaration attribute is overridden by

the current element constructor or an intermediate constructor
• Automatically, by the system

A namespace binding is created in the following situations:

– For every constructed element, to bind the prefix xml to the namespace URI http://
www.w3.org/XML/1998/namespace

– For each namespace that is used in the name of a constructed element or in the names of its
attributes, unless the namespace binding already exists in the in-scope namespaces of the element.
If the name of the node includes a prefix, the prefix is used in the namespace binding. If the name
has no prefix, a binding is created for the empty prefix. If a conflict arises that would require two

Chapter 10. XQuery prologs and expressions 217

different bindings of the same prefix, the prefix that is used in the node name is changed to an
arbitrary prefix, and the namespace binding is created for the arbitrary prefix.

Important: A prefix that is used in a QName must resolve to a valid URI. Otherwise, a binding for
that prefix cannot be added to the in-scope namespaces of the element. If the QName cannot be
resolved, the expression results in an error.

Examples

The following query includes a prolog that contains namespace declarations and a body that contains a
direct element constructor:

SELECT XMLQUERY(
 'declare namespace p="http://example.com/ns/p";
 declare namespace q="http://example.com/ns/q";
 declare namespace f="http://example.com/ns/f";
 <p:newElement q:b="B900" xmlns:r="http://example.com/ns/r"/>')
FROM SYSIBM.SYSDUMMY1

The namespace declarations in the prolog add the namespace bindings to the statically known
namespaces of the expression. However, the namespace bindings are added to the in-scope namespaces
of the constructed element only if the QNames in the constructor use these namespaces. Therefore, the
in-scope namespaces of p:newElement consist of the following namespace bindings:

• p = "http://example.com/ns/p" - This namespace binding is added to the in-scope namespaces
because the prefix p appears in the QName p:newElement.

• q = "http://example.com/ns/q" - This namespace binding is added to the in-scope namespaces
because the prefix q appears in the attribute QName q:b.

• r = "http://example.com/ns/r" - This namespace binding is added to the in-scope namespaces
because it is defined by a namespace declaration attribute.

• xml = "http://www.w3.org/XML/1998/namespace" - This namespace binding is added to the
in-scope namespaces because it is defined for every constructed element node.

No binding for the namespace f="http://example.com/ns/f" is added to the in-scope namespaces.
This is because the element constructor does not include element or attribute names that use the prefix
f. Therefore, this namespace binding does not appear in the query result, even though it is present in the
statically known namespaces and is available for use during processing of the query.

The query returns the following result:

<p:newElement xmlns:q="http://example.com/ns/q"
 xmlns:r="http://example.com/ns/r"
 xmlns:p="http://example.com/ns/p"
 q:b="B900"/>

The following query demonstrates that when a namespace binding is not used to generate a query result,
the namespace binding is not added to the in-scope namespaces of a constructed element.

SELECT XMLQUERY(
 'declare namespace p="http://example.com/ns/p";
 <newdoc>
 { $d/p:element1/p:element2 }
 </newdoc>'
 PASSING XMLPARSE(DOCUMENT
 '<p2:element1 xmlns:p2="http://example.com/ns/p">
 <p2:element2>New element</p2:element2>
 </p2:element1>')
 as "d")
FROM SYSIBM.SYSDUMMY1

The namespace binding p="http://example.com/ns/p" is not added to the in-scope namespaces of
p:element2, even though p appears in the query.

218 Db2 11 for z/OS: pureXML Guide

The query returns the following result:

<newdoc>
 <p2:element2 xmlns:p2="http://example.com/ns/p">
 New element
 </p2:element2>
</newdoc>

Document node constructors
All document node constructors are computed constructors. A document node constructor creates a
document node for which the content of the node is computed based on an enclosed expression.

A document node constructor is useful when the result of a query is a complete document. The result of a
document node constructor is a new document node that has its own node identity.

Important: No validation is performed on the constructed document node. The XQuery document node
constructor does not enforce the XML 1.0 rules that govern the structure of an XML document. For
example, a document node is not required to have exactly one child that is an element node.

Syntax
document { content-expression }

document
A keyword that indicates that the text that follows it constructs a document node.

content-expression
An expression that generates the content of the constructed document node. The value of content-
expression can be any sequence of nodes and atomic values except for an attribute node. Attribute
nodes in the content sequence result in an error. Document nodes in the content sequence are
replaced by their children. For each node that is returned by content-expression, a new copy is made
of the node and all of its descendants, which retain their original type annotations. Any atomic values
that are returned by the content expression are converted to strings and stored in text nodes, which
become children of the constructed document node. Adjacent text nodes are merged into a single text
node.

Example

The following query has a document node constructor that includes a content expression that returns an
XML document. The XML document contains a root element named item-list:

SELECT XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 let $i := $po/ipo:purchaseOrder/items/item
 return
 document
 {
 <item-list>
 {$i}
 </item-list>
 }'
 PASSING XMLAGG(PORDER) as "po")
FROM PURCHASEORDER

Suppose that the PORDER column in the PURCHASEORDER table contains the following data:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>

Chapter 10. XQuery prologs and expressions 219

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

This query returns the following result:

<item-list>
 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO" partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO" partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
</item-list>

Processing instruction constructors
Processing instruction constructors create processing instruction nodes. Db2 for z/OS supports direct
constructors for creating processing instruction nodes.

The constructed node has the following node properties:
A target property

Identifies the application to which the processing instruction is directed.
A content property

Specifies the content of the processing instruction.

Direct processing instruction constructors
Direct processing instruction constructors use an XML-like notation to create processing instruction
nodes.

Syntax
<? PI-target

Direct-PI-contents

?>

220 Db2 11 for z/OS: pureXML Guide

PI-target
An NCName that represents the name of the processing application to which the processing
instruction is directed. The PI target of a processing instruction cannot consist of the characters
"XML" in any combination of uppercase and lowercase.

Direct-PI-contents
A series of characters that specify the contents of the processing instruction. The contents of a
processing instruction cannot contain the string ?>.

Example

The following constructor creates a processing instruction node:

<?format role="output" ?>

Comment constructors
Comment constructors create comment nodes. Db2 for z/OS supports direct constructors for creating
comment nodes.

Direct comment constructors
Direct comment constructors use an XML-like notation to create comment nodes.

Syntax
<!-- direct-comment-contents -->

direct-comment-contents
A series of characters that specify the contents of the comment. The contents of a comment cannot
contain two consecutive hyphens or end with a hyphen.

Example

The following constructor creates a comment node:

<!-- This is an XML comment. -->

FLWOR expressions
FLWOR expressions iterate over sequences and bind variables to intermediate results.

FLWOR expressions are useful for:

• Computing joins between two or more documents
• Restructuring data
• Sorting the results

Chapter 10. XQuery prologs and expressions 221

Syntax of FLWOR expressions
A FLWOR expression is composed of the following clauses, some of which are optional: for, let, where,
order by, and return.

for-clause

let-clause where expression3

order by

,

expression4

ascending

descending

return expression5

for-clause
for

,

$ variable-name1

at $ positional-variable-name

in expression1

let-clause

let

,

$ variable-name2 := expression2

for
The keyword that begins a for clause. A for clause iterates over the result of expression1 and binds
variable-name1 to each item that is returned by expression1.

let
The keyword that begins a let clause. A let clause binds variable-name2 to the entire result of
expression2.

variable-name1, variable-name2
The name of the variable to bind to the result of expression1 or expression2.

positional-variable-name
The name of an optional variable that is bound to the position within the input stream of the item that
is bound by each iteration of the for clause.

expression1, expression2, expression3, expression4, expression5
Any XQuery expression. If the expression includes a top-level comma operator, then the expression
must be enclosed in parentheses.

where
The keyword that begins a where clause. A where clause filters the tuples of variable bindings that are
generated by the for and let clauses.

order by
The keywords that begin an order by clause. An order by clause specifies the order in which
values are processed by the return clause.

ascending
Specifies that ordering keys are processed in ascending order.

222 Db2 11 for z/OS: pureXML Guide

descending
Specifies that ordering keys are processed in descending order.

return
The keyword that begins a return clause. The expression in the return clause is evaluated once for
each tuple of bound variables that is generated by the for, let, where, and order by clauses. The
results of all of the evaluations of the return clause are concatenated into a single sequence, which
is the result of the FLWOR expression.

for and let clauses
A for or let clause in a FLWOR expression binds one or more variables to values that are to be used in
other clauses of the FLWOR expression.

for clauses
A for clause iterates through the result of an expression and binds a variable to each item in the
sequence.

The simplest type of for clause contains one variable and an associated expression. In the following
example, the for clause includes a variable called $i and an expression that constructs the sequence
(1, 2, 3):

SELECT XMLQUERY(
 'for $i in (1, 2, 3)
 return <output>{$i}</output>')
FROM SYSIBM.SYSDUMMY1

When the for clause is evaluated, three variable bindings are created (one binding for each item in the
sequence):

$i = 1
$i = 2
$i = 3

The return clause in the example executes once for each binding. The SQL statement returns a column
with the following row:

<output>1</output><output>2</output><output>3</output>

A for clause can contain multiple variables, each of which is bound to the result of an expression. In the
following example, a for clause contains two variables, $a and $b, and expressions that construct the
sequences 1 2 and 4 5:

SELECT XMLQUERY(
 'for $a in (1, 2), $b in (4, 5)
 return <output>{$a, $b}</output>'
 COLUMNS "x" XML PATH '.')
 FROM SYSIBM.SYSDUMMY1

When the for clause is evaluated, a tuple of variable bindings is created for each combination of values.
This results in four tuples of variable bindings:

($a = 1, $b = 4)
($a = 2, $b = 4)
($a = 1, $b = 5)
($a = 2, $b = 5)

The return clause in the example executes once for each tuple of bindings. The SQL statement returns a
column with the following rows:

<output>1 4</output>
<output>2 4</output>
<output>1 5</output>
<output>2 5</output>

Chapter 10. XQuery prologs and expressions 223

When the binding expression evaluates to an empty sequence, no for binding is generated, and no
iteration is performed. In the following example, the binding sequence evaluates to an empty sequence
and no iteration is performed. The node sequence in the return clause is not returned.

SELECT XMLQUERY(
 'for $node in
 (,
 ,
)[@test = "1"]
 return
 <test>
 Sample return response
 </test>')
 FROM SYSIBM.SYSDUMMY1

Positional variables in for clauses
Each variable that is bound in a for clause can have an associated positional variable that is bound at the
same time. The name of the positional variable is preceded by the keyword at. When a variable iterates
over the items in a sequence, the positional variable iterates over the integers that represent the positions
of those items in the sequence, starting with 1. You can reference the positional variables in the same way
that you reference any other variables.

In the following example, the for clause includes a variable called $cat and an expression that
constructs the sequence ("Persian", "Calico", "Siamese"). The clause also includes the
positional variable $i, which is referenced in an attribute constructor to compute the value of the order
attribute:

SELECT XMLQUERY(
 'for $cat at $i in
 ("Persian", "Calico","Siamese")
 return <cat order="{$i}">{$cat}</cat>')
 FROM SYSIBM.SYSDUMMY1

When the for clause is evaluated, three tuples of variable bindings are created, each of which includes a
binding for the positional variable:

($i = 1, $cat = "Persian")
($i = 2, $cat = "Calico")
($i = 3, $cat = "Siamese")

The return clause in the example executes once for each tuple of bindings. The expression results in the
following output:

<cat order="1">Persian</cat><cat order="2">Calico</cat><cat order="3">Siamese</cat>

Although each output element contains an order attribute, the actual order of the elements in the output
stream is not guaranteed unless the FLWOR expression contains an order by clause such as order by
$i. The positional variable represents the ordinal position of a value in the input sequence, not in the
output sequence.

let clauses
A let clause binds a variable to the entire result of an expression. A let clause does not perform any
iteration.

The simplest type of let clause contains one variable and an associated expression. In the following
example, the let clause includes a variable called $j and an expression that constructs the sequence
(1, 2, 3).

SELECT XMLQUERY(
 'let $j := (1, 2, 3)
 return <output>{$j}</output>')
 FROM SYSIBM.SYSDUMMY1

224 Db2 11 for z/OS: pureXML Guide

When the let clause is evaluated, a single binding is created for the entire sequence that results from
evaluating the expression:

$j = 1 2 3

The return clause in the example executes once. The SELECT statement results in the following output:

<output>1 2 3</output>

A let clause can contain multiple variables. However, unlike a for clause, a let clause binds each
variable to the result of its associated expression, without iteration. In the following example, a let
clause contains two variables, $a and $b, and expressions that construct the sequences 1 2 and 4 5:

SELECT XMLQUERY(
 'let $a := (1,2), $b := (4,5)
 return <output>{$a,$b}</output>')
 FROM SYSIBM.SYSDUMMY1

When the let clause is evaluated, one tuple of variable bindings is created:

($a = 1 2, $b = 4 5)

The return clause in the example executes once for the tuple. The expression results in the following
output:

<output>1 2 4 5</output>

When the binding expression evaluates to an empty sequence, a let binding is created that contains the
empty sequence.

for and let clauses in the same expression
When a FLWOR expression contains for and let clauses, the variable bindings for the let clauses are
added to the variable bindings for the for clauses.

In the following example, the for clause includes a variable called $a and an expression that constructs
the sequence (1, 2, 3). The let clause includes a variable called $b and an expression that
constructs the sequence (4, 5, 6):

SELECT XMLQUERY(
 'for $a in (1, 2, 3)
 let $b := (4, 5, 6)
 return <output>{$a, $b}</output>')
 FROM SYSIBM.SYSDUMMY1

The for and let clauses in this example result in three tuples of bindings. The number of tuples is
determined by the for clause.

($a = 1, $b = 4 5 6)
($a = 2, $b = 4 5 6)
($a = 3, $b = 4 5 6)

The return clause in the example executes once for each tuple of bindings. The SELECT statement
results in the following output:

<output>1 4 5 6</output><output>2 4 5 6</output><output>3 4 5 6</output>

Variable scope in for and let clauses
A variable that is bound in a for or let clause is in scope for the sub-expressions that appear after the
variable binding.

This means that a for or let clause can reference variables that are bound in earlier clauses or in earlier
bindings in the same clause.

Chapter 10. XQuery prologs and expressions 225

The following examples demonstrate variable scope in for or let clauses. They assume that the
PORDER column in the PURCHASEORDER table contains the following data:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

The following example shows that a variable can be bound in a clause and referenced in a later clause. In
the SELECT statement, the FLWOR expression has the following clauses:

• A let clause that binds the variable $item.
• A for clause that references $item and binds the variable $pn.
• A let clause that references both $item and $pn and binds the variables $n and $q.

SELECT XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 let $item := $po/ipo:purchaseOrder/items/item
 for $pn in $item/@partNum
 let $n := $item[@partNum = $pn]/productName,
 $q := $item[@partNum = $pn]/fn:sum(quantity)
 return fn:concat("Quantity of ", $n, " = ", $q, ", ")'
 PASSING PORDER as "po")
 FROM PURCHASEORDER

The SELECT statement results in the following output:

Quantity of Lapis necklace = 1, Quantity of Sapphire Bracelet = 2,

The following example shows that two variables with the same name can be bound and referenced within
the same scope. In the SELECT statement, the FLWOR expression has the following clauses:

• A let clause that binds a variable named $iteration to 0.
• A for clause that references a variable named $po that was bound by the PASSING clause, and binds a

new $po variable.

226 Db2 11 for z/OS: pureXML Guide

• A let clause that references the $iteration variable from the first let clause, and binds another
variable named $iteration.

SELECT XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 let $iteration := 0
 return
 for $po in $po/ipo:purchaseOrder/items/item/USPrice
 return
 let $iteration := $iteration + 1
 return
 <test iteration="{$iteration}">{$po}</test>'
 PASSING PORDER as "po") FROM PURCHASEORDER

The SELECT statement results in the following output:

<test iteration="1">
 <USPrice xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO">
 99.95
 </USPrice>
</test>
<test iteration="1">
 <USPrice xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO">
 178.99
 </USPrice>
</test>

where clauses
A where clause in an FLWOR expression filters the tuples of variable bindings that are generated by the
for and let clauses.

The where clause specifies a condition that is applied to each tuple of variable bindings. If the condition
is true (that is, if the expression results in an effective Boolean value of true), the tuple is retained, and its
bindings are used when the return clause executes. Otherwise, the tuple is discarded.

In the following example, the for clause binds the variables $x and $y to sequences of numeric values:

SELECT XMLQUERY(
 'for $x in (1.5, 2.6, 1.9), $y in (.5, 1.6, 1.7)
 where ((fn:floor($x) eq 1) and (fn:floor($y) eq 1))
 return <output>{$x, $y}</output>')
 FROM SYSIBM.SYSDUMMY1

When the for clause is evaluated, nine tuples of variable bindings are created:

($x = 1.5, $y = .5)
($x = 2.6, $y = .5)
($x = 1.9, $y = .5)
($x = 1.5, $y = 1.6)
($x = 2.6, $y = 1.6)
($x = 1.9, $y = 1.6)
($x = 1.5, $y = 1.7)
($x = 2.6, $y = 1.7)
($x = 1.9, $y = 1.7)

The where clause filters these tuples, and the following tuples are retained:

($x = 1.5, $y = 1.6)
($x = 1.9, $y = 1.6)
($x = 1.5, $y = 1.7)
($x = 1.9, $y = 1.7)

The return clause executes once for each of the retained tuples. The SELECT statement returns a single
row with the follow contents:

<output>1.5 1.6</output><output>1.9 1.6</output><output>1.5 1.7</output>
<output>1.9 1.7</output>

Chapter 10. XQuery prologs and expressions 227

Because the expression in this example does not include an order by clause, the order of the output
elements is non-deterministic.

order by clauses
An order by clause in an FLWOR expression specifies the order in which values are to be processed by
the return clause.

An order by clause contains one or more ordering specifications. Ordering specifications are used to
reorder the tuples of variable bindings that are retained after being filtered by the where clause. The
resulting order determines the order in which the return clause is evaluated.

Each ordering specification consists of an expression, which is evaluated to produce an ordering key, and
an order modifier, which specifies the sort order (ascending or descending) for the ordering keys. The
relative order of two tuples is determined by comparing the values of their ordering keys, working from
left to right.

In the following example, an FLWOR expression includes an order by clause that sorts products in
descending order based on their price:

SELECT XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in $po/ipo:purchaseOrder/items/item
 order by xs:decimal($i/USPrice) descending
 return fn:concat($i/productName, ":US$", $i/USPrice)'
 PASSING PORDER as "po")
FROM PURCHASEORDER

Suppose that the PORDER column of the PURCHASEORDER table contains this data:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

During processing of the order by clause, the expression in the ordering specification is evaluated for
each tuple that is generated by the for clause. For the first tuple, the value that is returned by the

228 Db2 11 for z/OS: pureXML Guide

expression xs:decimal($i/USPrice) is 99.95. The expression is then evaluated for the next tuple,
and the expression returns the value 178.99. Because the ordering specification indicates that items
are sorted in descending order, the product with the price 99.95 sorts before the product with the price
178.99. This sorting process continues until all tuples are reordered. The return clause then executes
once for each tuple in the reordered tuple stream.

The query in the example returns the following result:

Sapphire Bracelet:US$178.99 Lapis necklace:US$99.95

In the example, the expression in the ordering specification constructs an xs:decimal value from the value
of the USPrice element. This type conversion is necessary because the type annotation of the USPrice
element in the XML schema is xs:untypedAtomic. Without this conversion, the result would use string
ordering rather than numeric ordering.

Explicit type conversion is also required when the dynamic type of the ordering key value is
xs:untypedAtomic because the rules for comparing ordering keys dictate that untyped atomic data is
treated as a string.

Tip: You can use an order by clause in an FLWOR expression to specify value ordering in a query
that would otherwise not require iteration. For example, the following path expression returns a list of
customerinfo elements with a customer ID (Cid) that is greater than 1000:

$ci/customerinfo[@Cid > "1000"]

To return these items in ascending order by the name of the customer, however, you need to specify an
FLWOR expression that includes an order by clause:

SELECT XMLQUERY(
 'declare default element namespace "http://posample.org";
 for $custinfo in $ci/customerinfo
 where ($custinfo/@Cid > 1000)
 order by $custinfo/name ascending
 return $custinfo'
 PASSING XMLAGG(INFO) as "ci")
FROM CUSTOMER

The ordering key does not need to be part of the output. The following query produces a list of product
names, in descending order by price, but does not include the price in the output:

SELECT XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in $po/ipo:purchaseOrder/items/item
 order by xs:decimal($i/USPrice) descending
 return $i/productName'
 PASSING PORDER as "po")
FROM PURCHASEORDER

Rules for comparing ordering specifications
The process of evaluating and comparing ordering specifications is based on the following rules:

• The expression in the ordering specification is evaluated and the result is converted to an atomic value.
The result of the conversion must be a single atomic value or an empty sequence; otherwise an error is
returned. The result of evaluating an ordering specification is called an ordering key.

• If the type of an ordering key is xs:untypedAtomic, that key is cast to the type xs:string.
• If the values that are generated by an ordering specification are not all of the same type, those values

(keys) are converted to a common type by subtype substitution or type promotion. Keys are compared
by converting them to the least common type that supports the gt operator. If the ordering keys that
are generated by a given ordering specification do not have a common type that supports the gt
operator, an error results.

• The values of the ordering keys are used to determine the order in which tuples of bound variables
are passed to the return clause for execution. The ordering of tuples is determined by comparing their
ordering keys, from left to right, by using the following rules:

Chapter 10. XQuery prologs and expressions 229

– If the sort order is ascending, tuples with ordering keys that are greater than other tuples sort after
those tuples.

– If the sort order is descending, tuples with ordering keys that are greater than other tuples sort
before those tuples.

The greater-than relationship for ordering keys is defined as follows:

– An empty sequence is greater than all other values.
– NaN is greater than all other values except the empty sequence.
– A value is greater than another value if, when the value is compared to another value, the gt operator

returns true.
– Neither of the special floating-point values positive zero or negative zero is greater than the other

because +0.0 gt -0.0 and -0.0 gt +0.0 are both false.

return clauses
A return clause generates the result of the FLWOR expression.

The return clause is evaluated once for each tuple of variable bindings that is generated by the other
clauses of the FLWOR expression. The order in which tuples of bound variables are processed by the
return clause is non-deterministic unless the FLWOR expression contains an order by clause.

Tip: In return clauses, use parentheses to enclose expressions that contain top-level comma operators.
Because FLWOR expressions have a higher precedence than the comma operator, expressions that
contain top-level comma operators can result in errors or unexpected results if parentheses are not
used.

FLWOR examples
You can use FLWOR expressions in complete queries to perform joins, grouping, and aggregation.

FLWOR expression that joins XML data
The following query uses an XQuery FLWOR expression to express a join.

Suppose that the PORDER column of the PURCHASEORDER table contains this data:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>

230 Db2 11 for z/OS: pureXML Guide

 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

Also suppose that a table named STATUS has an XML column named STATUS, which has the following
data:

<status>
 <statusItem>
 <name>Robert Smith</name>
 <status>Premier</status>
 <comment>Orders a lot of jewelry</comment>
 <comment>Has friends in the Silicon Valley</comment>
 </statusItem>
 <statusItem>
 <name>Jane Carmody</name>
 <status>Unreliable</status>
 <comment>Has unpaid bills</comment>
 </statusItem>
</status>

The following example shows how to use an XQuery FLWOR expression to find those purchase orders that
were made by customers with Premier status.

SELECT XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in $po/ipo:purchaseOrder
 return
 <premierOrders> {
 for $j in $status/status/statusItem
 where $j/name=$i/billTo/name and $j/status="Premier"
 return
 $i }
 </premierOrders>'
 PASSING T1.PORDER as "po", T2.STATUS as "status")
 FROM PURCHASEORDER T1, STATUS T2;

The query returns the following result:

<premierOrders>
 <ipo:purchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO" orderDate="1999-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>

Chapter 10. XQuery prologs and expressions 231

 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
 </ipo:purchaseOrder>
</premierOrders>

FLWOR expression that uses conditional logic
The following example shows how to use XQuery to build a report of revenue for items in the PORDER
column of the PURCHASEORDER table that have already shipped.

SELECT XMLQUERY(
 'let $j := (
 for $i in $po//item
 return if (xs:date($i/shipDate) <= $currentDate)
 then xs:decimal($i/USPrice)
 else 0.0)
 return fn:sum($j)'
 PASSING T1.PORDER as "po", CURRENT DATE as "currentDate")
FROM PURCHASEORDER T1;

Suppose that the current date is 2009-01-01. The query returns the following result:

99.95

Conditional expressions
Conditional expressions use the keywords if, then, and else to evaluate one of two expressions based
on whether the value of a test expression is true or false.

Syntax

if (test-expression) then expression1 else expression2

if
The keyword that directly precedes the test expression.

test-expression
An XQuery expression that determines which part of the conditional expression to evaluate.

then
If the effective Boolean value of test-expression is true, then the expression that follows this keyword
is evaluated. The expression is not evaluated or checked for errors if the effective Boolean value of the
test expression is false.

else
If the effective Boolean value of test-expression is false, then the expression that follows this keyword
is evaluated. The expression is not evaluated or checked for errors if the effective Boolean value of the
test expression is true.

expression1 and expression2
Any XQuery expression. If the expression includes a top-level comma operator, then the expression
must be enclosed in parentheses.
If either the then or else condition branch contains an updating expression, then the conditional
expression is an updating expression. An updating expression must be within the modify clause of a
transform expression.
For an updating conditional expression, each branch must contain either an updating expression or
an empty sequence. Based on the value of the test expression, either the then or else clause is

232 Db2 11 for z/OS: pureXML Guide

selected and evaluated. The result of the conditional updating expression is a list of updates returned
by the selected branch. The containing transform expression performs the updates after merging
them with updates returned by other updating expressions within the modify clause of the transform
expression.

Restriction: test-expression, expression1, and expression2 cannot contain an FLWOR expression.

Example

Suppose that the PORDER column in the PURCHASEORDER table contains the following data:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

In the following example, the query constructs a list of item elements. The value of the shipping
element for an item is specified conditionally, based on whether the value of the USPrice element is
less than 100. In this example, the test expression constructs an xs:decimal value from the value of the
USPrice element. The xs:decimal function is used to force a decimal comparison.

SELECT XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in $po/ipo:purchaseOrder/items/item
 return
 <item>
 {$i/productName}
 <shipping>
 { if (xs:decimal($i/USPrice) lt 100) then 5 else 10 }
 </shipping>
 </item>'
 PASSING PORDER as "po")
 FROM PURCHASEORDER

The query returns the following result:

<item>
 <productName

Chapter 10. XQuery prologs and expressions 233

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO">
 Lapis necklace
 </productName>
 <shipping>5</shipping>
</item>
<item>
 <productName
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO">
 Sapphire Bracelet
 </productName>
 <shipping>10</shipping>
</item>

Basic updating expressions
Using the basic XQuery updating expressions, you can create complex updating expressions to update
existing XML data.

Basic updating expressions are valid only in the xquery-update-constant argument of the SQL XMLMODIFY
function.

Delete expression
A delete expression deletes zero or more nodes from a node sequence.

Syntax
delete nodes

node

target-expression

delete nodes or delete node
The keywords that begin a delete expression. delete nodes or delete node is valid, regardless of
the number of nodes that are to be deleted.

target-expression
An XQuery expression that is not an updating expression. The result of target-expression must be a
sequence of zero or more nodes.

The result of the delete expression is a list of nodes that are to be deleted. Any node that matches
target-expression is marked for deletion. If no nodes match target-expression, no nodes are deleted. The
deleted nodes are detached from their parent nodes. The nodes and the nodes' children are no longer
part of the node sequence. An error is returned if a node's parent property is empty.

If insertion of nodes results in adjacent text nodes with the same parent, the adjacent text nodes are
merged into a single text node. The string value of the resulting text node is the concatenation of the
string values of the adjacent text nodes, with no spaces added between string values.

Example

Suppose that a purchaseOrder document looks like this:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>

234 Db2 11 for z/OS: pureXML Guide

 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

The following SQL UPDATE statement uses a basic updating expression to delete the item whose
productName value is "Lapis necklace" from the purchaseOrder document.

UPDATE purchaseOrders
 SET PO = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 delete nodes /ipo:purchaseOrder/items/item[productName="Lapis necklace"]')

The result of the statement is:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

Related reference
XMLMODIFY (Db2 SQL)

Chapter 10. XQuery prologs and expressions 235

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlmodify.html

Insert expression
An insert expression inserts copies of one or more nodes into a designated position in a node sequence.

Syntax
insert nodes

node

source-expression before

after

as first into

as last into

into

target-expression

insert nodes or insert node
The keywords that begin an insert expression. insert nodes or insert node is valid, regardless of
the number of nodes that are to be inserted.

source-expression
An XQuery expression that is not an updating expression. The result of the source-expression is
a sequence of zero or more nodes that are to be inserted. Those nodes are called the insertion
sequence. If the insertion sequence contains a document node, the document node is replaced in the
insertion sequence by its children. If the insertion sequence contains an adjacent sequence of one or
more atomic values, the atomic values are replaced in the insertion sequence with a new text node
that contains the result of casting each atomic value to a string, and inserting a single space character
between adjacent atomic values.

If the insertion sequence contains attribute nodes that appear first in the sequence, the attributes are
added to the target-expression node or to its parent, depending on the keyword that is specified. If the
insertion sequence contains an attribute node that follows a node that is not an attribute node, Db2
returns an error.

before
Keyword that specifies that the source-expression nodes become the preceding siblings of the target-
expression node.

If multiple nodes are inserted before target-expression, the nodes remain adjacent and their order is
preserved. If the insertion sequence contains attribute nodes, the attribute nodes become attributes
of the parent of the target node.

after
Keyword that specifies that the source-expression nodes become the following siblings of the target-
expression node.

If multiple nodes are inserted after target-expression, the nodes remain adjacent and their order is
preserved. If the insertion sequence contains attribute nodes, the attribute nodes become attributes
of the parent of the target node.

as first into
Keywords that specify that the source-expression nodes become the first children of the target-
expression node.

The source-expression nodes are inserted as the first children of the target-expression node. If
multiple nodes are inserted as the first children of the target-expression node, the nodes remain
adjacent and their order is preserved. If the insertion sequence contains attribute nodes, the attribute
nodes become attributes of the target node.

as last into
Keywords that specify that the source-expression nodes become the last children of the target-
expression node.

The source-expression nodes are inserted as the last children of the target-expression node. If
multiple nodes are inserted as the last children of the target-expression node, the nodes remain

236 Db2 11 for z/OS: pureXML Guide

adjacent and their order is preserved. If the insertion sequence contains attribute nodes, the attribute
nodes become attributes of the target node.

into
Has the same behavior as as last into.

target-expression
An XQuery expression that is not an updating expression. If the result of target-expression is an empty
sequence, an error is returned. The following rules apply to target-expression:

• If the before or after keyword is specified:

– The result of target-expression must be a single element, text, processing instruction, or comment
node whose parent property is not empty.

– If the insertion sequence contains an attribute node, the parent of the target-expression node
must be an element node.

– The parent property of the target-expression node cannot be empty.
– If an attribute node in the insertion sequence has a qualified name (QName) with an implied

namespace binding, the namespaces property of the parent node of the target-expression node
is modified to include a namespace binding for any attribute namespace prefixes that do not
already have bindings. If the implied namespace binding conflicts with a namespace binding in
the namespaces property of the parent node of the target-expression node, an error is returned.

If the parent of the target-expression node is a document node and before or after is specified,
the insertion sequence cannot contain an attribute node.

• If the into, as first into, or as last into keywords are specified:

– The result of target-expression must be a single element, text, processing instruction, or comment
node whose parent property is not empty.

– If the insertion sequence contains an attribute node, the target-expression node cannot be a
document node.

– The parent property of the target-expression node cannot be empty.
– If an attribute node in the insertion sequence has a qualified name (QName) with an implied

namespace binding, the namespaces property of the target-expression node is modified
to include a namespace binding for any attribute namespace prefixes that do not already
have bindings. If the implied namespace binding conflicts with a namespace binding in the
namespaces property of the target-expression node, an error is returned.

If insertion of nodes results in adjacent text nodes with the same parent, the adjacent text nodes are
merged into a single text node. The string value of the resulting text node is the concatenation of the
string values of the adjacent text nodes, with no spaces added between string values.

If the result of the insert violates any constraint of the XPath 2. 0 and XQuery 1.0 data model, an error is
returned.

Example

Suppose that a purchaseOrder document looks like this:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>

Chapter 10. XQuery prologs and expressions 237

 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

The following SQL UPDATE statement uses a basic updating expression to insert a new item node as the
first node under the items node in the purchaseOrder document.

UPDATE T1
 SET X1 = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 insert nodes $item as first
 into /ipo:purchaseOrder/items',
 XMLPARSE(DOCUMENT
 '<item partNum="747-BB">
 <productName>Ruby Ring</productName>
 <quantity>1</quantity>
 <USPrice>75.50</USPrice>
 <shipDate>2007-05-13</shipDate>
 </item>') as "item")

The result of the statement is:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="747-BB">
 <productName>Ruby Ring</productName>
 <quantify>1</quantity>
 <USPrice>75.50</USPrice>
 <shipDate>2007-05-13</shipDate>
 </item>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>

238 Db2 11 for z/OS: pureXML Guide

 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

Related reference
XMLMODIFY (Db2 SQL)

Replace expression
A replace expression replaces an existing node with a new sequence of zero or more nodes, or replaces a
node's value while preserving the node's identity.

Syntax
replace

value of

node target-expression with source-expression

replace
The keyword that begins a replace expression.

value of
The keywords that specify replacing the value of the target-expression node that is to be replaced.

node
The keyword that begins the target expression.

target-expression
An XQuery expression that is not an updating expression. The result of target-expression must be a
single node that is not a document node. If the result of target-expression is an empty sequence, an
error is returned.

If the value of keywords are not specified, the result of target-expression must be a single node
whose parent property is not empty.

with
The keyword that begins the source expression.

source-expression
An XQuery expression that is not an updating expression.

If the value of keywords are specified, the result of source-expression is a single text node or
an empty sequence. During processing, atomization is applied to source-expression, to convert it
to a sequence of atomic values. If the result of atomization is an empty sequence, the result of
source-expression is an empty sequence. Otherwise, each atomic value in the atomized sequence is
cast to a string. All of the strings are concatenated, with a single space character between each pair of
strings.

If the value of keywords are not specified, the result of source-expression must be a sequence of
nodes. If the source-expression sequence contains a document node, the document node is replaced
by its children. If source-expression contains an adjacent sequence of one or more atomic values,
a new text node is constructed containing the result of casting each atomic value to a string, with
a single space character inserted between adjacent values. The source-expression sequence must
consist of the following node types:

• If the target-expression node is an attribute node, the replacement sequence must consist of zero or
more attribute nodes.

Chapter 10. XQuery prologs and expressions 239

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlmodify.html

• If the target-expression node is an element, text, comment, or processing instruction node, the
replacement sequence must consist of some combination of zero or more element, text, comment,
or processing instruction nodes.

The following updates are generated when the value of keywords are specified:

• If the target-expression node is an element node, the existing children of the target-expression node are
replaced by the text node returned by the source-expression. If the source-expression returns an empty
sequence, the children property of the target-expression node becomes empty. If the target-expression
node contains attribute nodes, they are not affected.

• If the target-expression node is not an element node, the string value of the target-expression node
is replaced by the string value of the text node that is returned by the source-expression. If the source-
expression does not return a text node, the string value of the target-expression node is replaced by a
zero-length string.

If the target-expression node is a comment node, and if the string value of the text node that is returned
by source-expression contains two adjacent hyphens or ends with a hyphen, an error is returned.

If the target-expression node is a processing instruction node, and if the string value of the text node
that is returned by source-expression contains the substring "?>", an error is returned.

The following updates are generated when the value of keywords are not specified:

• source-expression nodes replace the target-expression node. The parent node of the target-expression
node becomes the parent of each of the source-expression nodes. The source-expression nodes occupy
the position in the node hierarchy that is occupied by the target-expression node.

• The target-expression node, and all of its attributes and descendants are detached from the node
sequence.

• If target-expression has an attribute node, and an attribute node in the replacement sequence has
a qualified name (QName) with an implied namespace binding, the namespaces property of the
parent node of the target-expression node is modified to include a namespace binding for any attribute
namespace prefixes that do not already have bindings. If the implied namespace binding conflicts with
a namespace binding in the namespaces property of the parent node of the target-expression node, an
error is returned.

If replacement of nodes results in adjacent text nodes with the same parent, the adjacent text nodes are
merged into a single text node. The string value of the resulting text node is the concatenation of the
string values of the adjacent text nodes, with no spaces added between string values.

If the result of the replace violates any constraint of the XPath 2. 0 and XQuery 1.0 data model, an error is
returned.

Example

Suppose that a purchaseOrder document looks like this:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>

240 Db2 11 for z/OS: pureXML Guide

 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

The following SQL UPDATE statement uses a basic updating expression to replace the value of the
street node in the billTo node of the purchaseOrder document with a new value.

UPDATE PURCHASEORDER
 SET PORDER = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 replace value of node /ipo:purchaseOrder/billTo/street
 with "505 First Street"')

The result of the statement is:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="2008-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>505 First Street</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>2008-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2009-01-03</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

Chapter 10. XQuery prologs and expressions 241

Related reference
XMLMODIFY (Db2 SQL)

Castable expressions
Castable expressions test whether a value can be cast to a specific data type. If the value can be cast to
the data type, the castable expression returns true. Otherwise, the expression returns false.

Castable expressions can be used as predicates to avoid cast errors at evaluation time. They can also be
used to select an appropriate type for processing a value.

Syntax
expression castable as target-type

?

expression
An XQuery expression that returns a single atomic value or an empty sequence.

target-type
The type used to test if the value of expression can be cast. target-type must be an atomic type that is
one of the predefined XML schema types. The data types xs:anyAtomicType and xs:anySimpleType are
not valid types for target-type.

?
Indicates that an empty sequence is considered to be a valid instance of the target type. If expression
evaluates to an empty sequence and ? is not specified, the castable expression returns false.

Returned value
If expression can be cast to target-type, the castable expression returns true. Otherwise, the expression
returns false.

If the result of expression is an empty sequence, and the question mark indicator follows target-type,
the castable expression returns true. In the following example, the question mark indicator follows the
target type xs:integer.

$prod/revision castable as xs:integer?

An error is returned in the following cases:

• The result of expression is a sequence of more than one atomic value.
• target-type is not an atomic data type that is defined for the in-scope XML schema types or is a data type

that cannot be used in a castable expression.

Examples

The following example uses a castable expression as a predicate to avoid errors at evaluation time. The
example avoids a dynamic error if @OrderDate is not a valid date.

let $i := if ($po/@OrderDate castable as xs:date)
 then xs:date($po/@OrderDate) gt xs:date("2009-01-01")
 else 0
return $po/orderID[$i]

The predicate is true and returns the orderID only if the date attribute is a valid date greater than
January 1, 2009. Otherwise, the predicate is false and returns an empty sequence.

242 Db2 11 for z/OS: pureXML Guide

https://www.ibm.com/docs/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_bif_xmlmodify.html

The following example uses a castable expression to select an appropriate type for processing of a given
value. The example casts a postal code as either an integer or a string.

if ($postalcode castable as xs:integer)
 then xs:integer($postalcode)
 else xs:string($postalcode)

The following example uses a castable expression in the FLWOR let clause to test the value of $prod/
mfgdate and bind a value to $currdate. The castable expression supports processing an empty
sequence using the question mark indicator.

let $currdate := if ($prod/mfgdate castable as xs:date?)
 then xs:date($prod/mfgdate)
 else xs:date("2000-01-01")

If the value of $prod/mfgdate can be cast as xs:date, it is cast to the data type and is bound to
$currdate. If $prod/mfgdate is an empty sequence, an empty sequence is bound to $currdate.
If $prod/mfgdate cannot be cast as xs:date, a value of 2000-01-01 of type xs:date is bound to
$currdate.

In the following example, the castable expression in the XMLEXISTS predicate tests the value of /
prod/category before performing a comparison to avoid errors at evaluation time. In the XML column
FEATURES.INFO, the documents contain the element /prod/category. The value is either a numeric
code or string code.

SELECT F.PRODID FROM F FEATURES
 WHERE XMLEXISTS('$test/prod/category[((. castable as xs:double) and . > 100) or
 ((. castable as xs:string) and . > "A100")]'
 PASSING F.INFO as "test")

The returned values are product IDs where the category codes are either greater than the number 100 or
greater than the string "A100".

Regular expressions
A regular expression is a sequence of characters that act as a pattern for matching and manipulating
strings. Regular expressions are used in the fn:matches, fn:replace, and fn:tokenize functions.

Syntax
|

^

character
.

character-class-escape

[character-group]

(regular-expression)

?

*

+

{  n}

{  n,m }

{  n,}

$

character-group

^

character

character-class-escape character

character-class-escape

Chapter 10. XQuery prologs and expressions 243

character
In a regular expression, character is a normal XML character that is not a metacharacter.

Metacharacters
Metacharacters are control characters in regular expressions. The regular expression metacharacters
that are currently supported are:
backslash (\)

Begins a character class escape. A character class escape indicates that the metacharacter that
follows is to be used as a character, instead of a metacharacter.

period (.)
Matches any single character except a newline character (\n).

carat (^)
If the carat character appears outside of a character class, the characters that follow the carat
match the start of the input string or, for multi-line input strings, the start of a line. An input string
is considered to be a multi-line input string if the function that uses the input string includes the m
flag.

If the carat character appears as the first character within a character class, the carat acts as a
not-sign. A match occurs if none of the characters in the character group appear in the string that
is being compared to the regular expression.

dollar sign ($)
Matches the end of the input string or, for multi-line input strings, the end of a line. An input string
is considered to be a multi-line input string if the function that uses the input string includes the m
flag.

question mark (?)
Matches the preceding character or character group in the regular expression zero or one time.

asterisk (*)
Matches the preceding character or character group in the regular expression zero or more times.

plus sign (+)
Matches the preceding character or character group in the regular expression one or more times.

{n}
Matches the preceding character or character group in the regular expression exactly n times. n
must be a positive integer.

{n,m}
Matches the preceding character or character group in the regular expression at least n times,
but not more than m times. n must be a positive integer, and m must be a positive integer that is
greater than or equal to n.

{n,}
Matches the preceding character or character group in the regular expression at least n times. n
must be a positive integer.

opening bracket ([) and closing bracket (])
The opening and closing brackets and the enclosed character group define a character class. For
example, the character class [aeiou] matches any single vowel. Character classes also support
character ranges. For example:

• [a-z] means any lowercase letter.
• [a-p] means any lowercase letter from a through p.
• [0-9] means any single digit.

opening parenthesis (() and closing parenthesis ())
An opening and closing parenthesis denote a grouping of some characters within a regular
expression. You can then apply an operator, such as a repetition operator, to the entire group.

character-class-escape
A character class escape specifies that you want certain special characters to be treated as
characters, instead of performing some function. A character class escape consists of a backslash

244 Db2 11 for z/OS: pureXML Guide

(\), followed by a single metacharacter, newline character, return character, or tab character. The
following table lists the character class escapes.

Table 50. Single-character character class escapes

Character escape Character represented Description

\n #x0A Newline

\r #x0D Return

\t #x09 Tab

\\ \ Backslash

\| | Pipe

\. . Period

\? ? Question mark

* * Asterisk

\+ + Plus sign

\((Opening parenthesis

\)) Closing parenthesis

\{ { Opening curly brace

\} } Closing curly brace

\$ $ Dollar sign

\- - Dash

\[[Opening bracket

\]] Closing bracket

\^ ^ Caret

character-group
A character group is the set of characters in a character class. The character class is used for
matching. It can consist characters, character ranges, character class escapes, and an optional
opening carat. If the carat is included, it indicates the complement of the set of characters that
are defined by the rest of character group.

Examples

The following examples demonstrate how each of the metacharacters affects a regular expression.

• "hello[0-9]world" matches "hello3world", but not "hello world".
• "^hello" matches this text:

hello world

However, "^hello" does not match this text:

world hello

• "hello$" matches this text:

world hello

Chapter 10. XQuery prologs and expressions 245

However, "hello$" does not match this text:

hello world

• "(ca)|(bd)" matches "arcade" or "abdicate".
• "^((ca)|(bd))" does not match "arcade" or "abdicate".
• "w?s" matches "ws" or "s".
• "w.*s" matches "was" or "waters".
• "be+t" matches "beet" or "bet".
• "be{1,3}t" matches "bet", "beet", or "beeet".
• "\[n\]" matches "[n]".

Related reference
fn:matches function
The fn:matches function determines whether a string matches a given pattern.
fn:replace function
The fn:replace function compares each set of characters within a string to a given pattern. fn:replace
replaces the characters that match the pattern with another set of characters.
fn:tokenize function
The fn:tokenize function breaks a string into a sequence of substrings.

246 Db2 11 for z/OS: pureXML Guide

Chapter 11. Descriptions of XQuery functions
The XQuery functions are a subset of the XPath 2.0 and XQuery 1.0 functions and operators.

These topics provide detailed reference information for the XQuery functions that are supported by Db2
for z/OS.

Restriction: An argument to an XQuery function cannot contain an FLWOR expression.

fn:abs function
The fn:abs function returns the absolute value of a numeric value.

Syntax
fn:abs( numeric-value)

numeric-value
An atomic value or an empty sequence.

If numeric-value is an atomic value, it has one of the following types:

• xs:double
• xs:decimal
• xs:integer
• A type that is derived from any of the previously listed types
• xs:untypedAtomic

If numeric-value has the xs:untypedAtomic data type, it is converted to an xs:double value.

Returned value
If numeric-value is not the empty sequence, the returned value is the absolute value of numeric-value.

If numeric-value is the empty sequence, fn:abs returns the empty sequence.

The data type of the returned value depends on the data type of numeric-value:

• If numeric-value is xs:double, xs:decimal or xs:integer, the value that is returned has the same type as
numeric-value.

• If numeric-value has a data type that is derived from xs:double, xs:decimal or xs:integer, the value that
is returned has the direct parent data type of numeric-value.

• If numeric-value has the xs:untypedAtomic data type, the value that is returned has the xs:double data
type.

Example
The following function returns the absolute value of –10.5.

fn:abs(-10.5)

The returned value is 10.5.

© Copyright IBM Corp. 2007, 2021 247

fn:adjust-date-to-timezone function
The fn:adjust-date-to-timezone function adjusts an xs:date value to a specific time zone, or
removes the time zone component from the value.

Syntax
fn:adjust-date-to-timezone( date-value

, timezone-value

)

date-value
The date value that is to be adjusted.

date-value is of type xs:date, or is an empty sequence.

timezone-value
A duration that represents the time zone to which date-value is to be adjusted.

timezone-value can be an empty sequence or a single value of type xs:dayTimeDuration between
-PT14H and PT14H, inclusive. The value can have an integer number of minutes and must not have
a seconds component. If timezone-value is not specified, the default value is PT0H, which represents
UTC.

Returned value
The returned value is either a value of type xs:date or an empty sequence depending on the parameters
that are specified. If date-value is not an empty sequence, the returned value is of type xs:date. The
following table describes the possible returned values:

Table 51. Types of input values and returned value for fn:adjust-date-to-timezone

date-value timezone-value Returned value

date-value that contains a time
zone component

An explicit value, or no value
specified (duration of PT0H)

The date-value adjusted for the
time zone represented by timezone-
value.

date-value that contains a time
zone component

An empty sequence The date-value with no time zone
component.

date-value that does not contain a
time zone component

An explicit value, or no value
specified (duration of PT0H)

The date-value with a time
zone component. The time zone
component is the time zone
represented by timezone-value. The
date component is not adjusted for
the time zone.

date-value that does not contain a
time zone component

An empty sequence The date-value.

An empty sequence An explicit value, empty sequence,
or no value specified

An empty sequence.

When adjusting date-value to a different time zone, date-value is treated as a dateTime value with time
component 00:00:00. The returned value contains the time zone component represented by timezone-
value. The following function calculates the adjusted date value:

xs:date(fn:adjust-dateTime-to-timezone(xs:dateTime(date-value),timezone-value))

248 Db2 11 for z/OS: pureXML Guide

Examples
In the following examples, the variable $tz is a duration of -10 hours, defined as
xs:dayTimeDuration("-PT10H").

The following function adjusts the date value for May 7, 2009 in the UTC+1 time zone. The function
specifies a timezone-value of -PT10H.

fn:adjust-date-to-timezone(xs:date("2009-05-07+01:00"), $tz)

The returned date value is 2009-05-06-10:00. The date is adjusted to the UTC-10 time zone.

The following function adds a time zone component to the date value for March 7, 2009 without a time
zone component. The function specifies a timezone-value of -PT10H.

fn:adjust-date-to-timezone(xs:date("2009-03-07"), $tz)

The returned value is 2009-03-07-10:00. The time zone component is added to the date value.

The following function adjusts the date value for February 9, 2009 in the UTC-7 time zone. Without a
timezone-value specified, the function uses the default timezone-value PT0H.

fn:adjust-date-to-timezone(xs:date("2009-02-09-07:00"))

The returned date is 2009-02-09Z, the date is adjusted to UTC.

The following function removes the time zone component from the date value for May 7, 2009 in the
UTC-7 time zone. The timezone-value is an empty sequence.

fn:adjust-date-to-timezone(xs:date("2009-05-07-07:00"), ())

The returned value is 2009-05-07.

fn:adjust-dateTime-to-timezone function
The fn:adjust-dateTime-to-timezone function adjusts an xs:dateTime value to a specific time
zone, or removes the time zone component from the value.

Syntax
fn:adjust-dateTime-to-timezone( dateTime-value

, timezone-value

)

dateTime-value
The dateTime value that is to be adjusted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

timezone-value
A duration that represents the time zone to which dateTime-value is to be adjusted.

timezone-value can be an empty sequence or a single value of type xs:dayTimeDuration between
-PT14H and PT14H, inclusive. The value can have an integer number of minutes and must not have
a seconds component. If timezone-value is not specified, the default value is PT0H, which represents
UTC.

Returned value
The returned value is either a value of type xs:dateTime or is an empty sequence depending on the types
of input values. If dateTime-value is not an empty sequence, the returned value is of type xs:dateTime.
The following table describes the possible returned values:

Chapter 11. Descriptions of XQuery functions 249

Table 52. Types of input values and returned value for fn:adjust-dateTime-to-timezone

dateTime-value timezone-value Returned value

dateTime-value that contains a time
zone component

An explicit value, or no value
specified (duration of PT0H)

The dateTime-value adjusted to
the time zone represented by
timezone-value. The returned value
contains the time zone component
represented by timezone-value.

dateTime-value that contains atime
zone component

An empty sequence The dateTime-value with no time
zone component.

dateTime-value that does not
contain a time zone component

An explicit value, or no value
specified (duration of PT0H)

The dateTime-value with a time
zone component. The time zone
component is the time zone
represented by timezone-value. The
date and time components are not
adjusted to the time zone.

dateTime-value that does not
contain a time zone component

An empty sequence The dateTime-value.

An empty sequence An explicit value, empty sequence,
or no value specified

An empty sequence.

Examples
In the following examples, the variable $tz is a duration of -10 hours, defined as
xs:dayTimeDuration("-PT10H").

The following function adjusts the dateTime value of March 7, 2009 at 10 a.m. in the UTC-7 time zone to
the time zone specified by time zone-value of -PT10H.

fn:adjust-dateTime-to-timezone(xs:dateTime("2009-03-07T10:00:00-07:00"), $tz)

The returned dateTime value is 2009-03-07T07:00:00-10:00.

The following function adjusts the dateTime value for March 7, 2009 at 10 am. The dateTime-value does
not have a time zone component, and the function specifies a timezone-value of -PT10H.

fn:adjust-dateTime-to-timezone(xs:dateTime("2009-03-07T10:00:00"), $tz)

The returned dateTime is 2009-03-07T10:00:00-10:00.

In the following function adjusts the dateTime value for June 4, 2009 at 10 a.m. in the UTC-7 time zone.
Without a timezone-value specified, the function uses the default time zone value of PT0H.

fn:adjust-dateTime-to-timezone(xs:dateTime("2009-06-04T10:00:00-07:00"))

The returned dateTime value is 2009-06-04T17:00:00Z, which is the dateTime value adjusted to UTC.

The following function removes the time zone component from the dateTime value for March 7, 2009 at
10 a.m. in the UTC-7 time zone. The timezone-value value is the empty sequence.

fn:adjust-dateTime-to-timezone(xs:dateTime("2009-03-07T10:00:00-07:00"), ())

The returned dateTime value is 2009-03-07T10:00:00.

250 Db2 11 for z/OS: pureXML Guide

fn:adjust-time-to-timezone function
The fn:adjust-time-to-timezone function adjusts an xs:time value to a specific time zone, or
removes the time zone component from the value.

Syntax
fn:adjust-time-to-timezone( time-value

, timezone-value

)

time-value
The time value that is to be adjusted.

time-value is of type xs:time, or is an empty sequence.

timezone-value
A duration that represents the time zone to which time-value is to be adjusted.

timezone-value can be an empty sequence or a single value of type xs:dayTimeDuration between
-PT14H and PT14H, inclusive. The value can have an integer number of minutes and must not have
a seconds component. If timezone-value is not specified, the default value is PT0H, which represents
UTC.

Returned value
The returned value is either a value of type xs:time or an empty sequence depending on the parameters
that are specified. If time-value is not an empty sequence, the returned value is of type xs:time. The
following table describes the possible returned values:

Table 53. Types of input values and returned value for fn:adjust-time-to-timezone

date-value timezone-value Returned value

time-value that contains a time
zone component

An explicit value, or no value
specified (duration of PT0H)

The time-value adjusted for
the time zone represented by
timezone-value. The returned value
contains the time zone component
represented by timezone-value. If
the time zone adjustment crosses
over midnight, the change in date is
ignored.

time-value that contains a time
zone component

An empty sequence The time-value with no time zone
component.

time-value that does not contain a
time zone component

An explicit value, or no value
specified (duration of PT0H)

The time-value with a time
zone component. The time zone
component is the time zone
represented by timezone-value. The
time component is not adjusted for
the time zone.

time-value that does not contain a
time zone component

An empty sequence The time-value.

An empty sequence An explicit value, empty sequence,
or no value specified

An empty sequence.

Chapter 11. Descriptions of XQuery functions 251

Examples
In the following examples, the variable $tz is a duration of -10 hours, defined as
xs:dayTimeDuration("-PT10H").

The following function adjusts the time value for 10:00 a.m. in the UTC-7 time zone, and the function
specifies a timezone-value of -PT10H.

fn:adjust-time-to-timezone(xs:time("10:00:00-07:00"), $tz)

The returned value is 7:00:00-10:00. The time is adjusted to the time zone represented by the duration
-PT10H.

The following function adjusts the time value for 1:00 p.m. The time value does not have a time zone
component.

fn:adjust-time-to-timezone(xs:time("13:00:00"), $tz)

The returned value is 13:00:00-10:00. The time contains a time zone component represented by the
duration -PT10H.

The following function adjusts the time value for 10:00 a.m. in the UTC-7 time zone. The function does not
specify a timezone-value and uses the default value of PT0H.

fn:adjust-time-to-timezone(xs:time("10:00:00-07:00"))

The returned value is 17:00:00Z, the time adjusted to UTC.

The following function removes the time zone component from the time value 8:00 am in the UTC-7 time
zone. The timezone-value is the empty sequence.

fn:adjust-time-to-timezone(xs:time("08:00:00-07:00"), ())

The returned value is 8:00:00.

The following example compares two times. The time zone adjustment crosses over midnight and causes
a date change. However, fn:adjust-time-to-timezone ignores date changes.

fn:adjust-time-to-timezone(xs:time("01:00:00+14:00"), $tz)
 = xs:time("01:00:00-10:00")

The returned value is true.

fn:avg function
The fn:avg function returns the average of the values in a sequence.

Syntax
fn:avg( sequence-expression)

sequence-expression
A sequence that contains items of any of the following atomic types, or an empty sequence:

• xs:double
• xs:decimal
• xs:integer
• xs:untypedAtomic
• xs:dayTimeDuration
• xs:yearMonthDuration

252 Db2 11 for z/OS: pureXML Guide

• A type that is derived from any of the previously listed types

Input items of type xs:untypedAtomic are cast to xs:double.

Returned value
If sequence-expression is not the empty sequence, the returned value is the average of the values in
sequence-expression. The data type of the returned value is the same as the data type of the items in
sequence-expression, or the data type to which the items in sequence-expression are promoted.

If sequence-expression is the empty sequence, the empty sequence is returned.

If sequence-expression has two or more of the following data types, an error is returned:

• xs:dayTimeDuration
• xs:yearMonthDuration
• numeric data types

Example
The following function returns the average of the sequence (5, 1.0E2, 40.5):

fn:avg((5, 1.0E2, 40.5))

The values are promoted to the xs:double data type. The function returns the xs:double value 4.85E1,
which is serialized as "48.5".

fn:boolean function
The fn:boolean function returns the effective boolean value of a sequence.

Syntax
fn:boolean( sequence-expression)

sequence-expression
Any sequence that contains items of any type, or the empty sequence.

Returned value
The returned value is an xs:boolean value that depends on the value of sequence-expression:

• If sequence-expression is the empty sequence, false is returned.
• If sequence-expression is not the empty sequence, and sequence-expression contains one value:

– If the value is the xs:boolean value false, false is returned.
– If the value is a string of length 0, and the type is xs:string or xs:untypedAtomic, false is returned.
– If the value is 0, and the type is a numeric type, false is returned.
– If the value is NaN, and the type is xs:double, false is returned.
– Otherwise, true is returned.

• If sequence-expression is not the empty sequence, and sequence-expression contains more than one
value, true is returned.

Examples
The following functions return true, because they are both strings with a length greater than zero

• fn:boolean("true")

Chapter 11. Descriptions of XQuery functions 253

• fn:boolean("false")

The following function returns false, because the value of the sequence-expression is 0 and the type is
numeric: fn:boolean(0)

The following examples show how the fn:boolean function can be used in the larger context of Db2.
The XMLQUERY statements are used to query XML data and take an XQuery expression as the first
argument. In both cases, the fn:boolean function is passed data from the PASSING clause. In the first
example, the argument of the fn:boolean function is a sequence of three zeros. In the second example,
the argument of the fn:boolean function is three "false" values. Both functions evaluate to true, because
the sequence-expression contains more than one value.

XMLQUERY('fn:boolean($x)' PASSING XMLCONCAT(XMLQUERY('0'),
 XMLQUERY('0'),XMLQUERY('0')))

XMLQUERY('fn:boolean(fn:data(//b))'
 PASSING XMLPARSE(DOCUMENT '<a>falsefalse>false'))

fn:compare function
The fn:compare function compares two strings.

Syntax
fn:compare( string-1 , string-2)

string-1 and string-2
The xs:string values that are to be compared. Db2 compares the numeric Unicode UTF-8 code value of
each character.

Returned value
If string-1 and string-2 are not the empty sequence, one of the following xs:integer values is returned:
-1

If string-1 is less than string-2.
0

If string-1 is equal to string-2.
1

If string-1 is greater than string-2.

Two strings are compared by comparing the corresponding bytes of each string. If the strings do not
have the same length, the comparison is made with a temporary copy of the shorter string that has been
padded on the right with blanks so that it has the same length as the other string.

string-1 and string-2 are equal if they both have length 0 or if all corresponding bytes are equal.

If string-1 and string-2 are not equal, their relationship (that is, which has the greater value) is determined
by the comparison of the first pair of unequal bytes from the left end of the strings. This comparison is
made according to the collation.

If string-1 is longer than string-2, and all bytes of string-2 are equal to the leading bytes of string-1,
string-1 is greater than string-2.

If string-1 or string-2 is the empty sequence, the empty sequence is returned.

Example
The following function compares 'ABC' to 'ABD' using the default collation.

fn:compare('ABC', 'ABD')

254 Db2 11 for z/OS: pureXML Guide

'ABC' is less than 'ABD'. The returned value is -1.

fn:concat function
The fn:concat function concatenates two or more strings into a single string.

Syntax
fn:concat( string-value , string-value

,

,

string-value

)

string-value
An xs:string value or the empty sequence.

Returned value
If all string-value arguments are the empty sequence, the returned value is the empty sequence.
Otherwise, the returned value is an xs:string value that is the concatenation of all string-value arguments
that are not the empty sequence.

Example
The following function concatenates the strings 'ABC', 'ABD', the empty sequence, and 'ABE',

fn:concat('ABC', 'ABD', (), 'ABE')

The returned value is 'ABCABDABE'.

fn:contains function
The fn:contains function determines whether a string contains a given substring.

Syntax
fn:contains( string , substring)

string
The string to search for substring.

string has the xs:string data type, or is the empty sequence. If string is the empty sequence, string is
set to a string of length 0.

substring
The substring to search for in string.

substring has the xs:string data type, or is the empty sequence.

Returned value
The returned value depends on the values of string and substring:

• If string and substring are not the empty sequence, the returned value is true if substring occurs
anywhere within string. If substring does not occur within string, the returned value is false.

• If string is the empty sequence, the returned value is true if substring is the empty sequence or a string
of length 0.

• If substring is the empty sequence or a string of length 0, the returned value is true.

Chapter 11. Descriptions of XQuery functions 255

Example
The following function determines whether the string 'Test literal' contains the string 'lite'.

fn:contains('Test literal','lite')

The returned value is true.

fn:count function
The fn:count function returns the number of values in a sequence.

Syntax
fn:count( sequence-expression)

sequence-expression
A sequence that contains items of any atomic type, or an empty sequence.

Returned value
If sequence-expression is not the empty sequence, an xs:integer value that is the number of values in
sequence-expression is returned. If sequence-expression is the empty sequence, 0 is returned.

Example
The following function returns 1:

fn:count(5)

The following function returns the number of employees with a department ID of K55:

fn:count(//company/emp[dept/@id="K55"])

fn:current-date function
The fn:current-date function returns the current date in the local time zone.

Syntax
fn:current-date()

Returned value
The returned value is an xs:date value that is the current date. The time zone component of the returned
value is the local time zone.

Example
The following function returns the current date.

fn:current-date()

If this function were invoked on December 2, 2009, in Pacific Standard Time, the returned value would be
2009-12-02-08:00.

256 Db2 11 for z/OS: pureXML Guide

fn:current-dateTime function
The fn:current-dateTime function returns the current date and time in the local time zone.

Syntax
fn:current-dateTime()

Returned value
The returned value is an xs:dateTime value that is the current date and time. The time zone component of
the returned value is the local time zone. The maximum precision for fractions of seconds is 12.

Example
The following function returns the current date and time.

fn:current-dateTime()

If this function were invoked on December 2, 2009 at 6:25 in Toronto (time zone -PT5H), the returned
value would be 2009-12-02T06:25:30.3847249023-05:00.

fn:current-time function
The fn:current-time function returns the current time in the local time zone.

Syntax
fn:current-time()

Returned value
The returned value is an xs:time value that is the current time. The time zone component of the returned
value is the local time zone. The precision for fractions of seconds is 12.

Example
The following function returns the current time.

fn:current-time()

If this function were invoked at 6:31 Pacific Standard Time (-08:00), the returned value would be
06:31:35.519003948231-08:00.

fn:data function
The fn:data function converts a sequence of items to a sequence of atomic values.

Syntax
fn:data( sequence)

sequence
Any sequence, including the empty sequence.

Chapter 11. Descriptions of XQuery functions 257

Returned values
The returned value is a sequence of items of type xs:anyAtomicType. For each item in the sequence:

• If the item is an atomic value, the returned value is that value.
• If the item is a node, the returned value is the typed value of the node.

Example
The following function returns the typed values of all qualifying name nodes. Qualifying name nodes are
all name nodes that are children of a billTo node in the document.

fn:data(//billTo/name)

fn:dateTime function
The fn:dateTime function constructs an xs:dateTime value from an xs:date value and an xs:time value.

Syntax
fn:dateTime( date-value , time-value)

date-value
An xs:date value.

time-value
An xs:time value.

Returned value
The returned value is an xs:dateTime value with a date component that is equal to date-value and a time
component that is equal to time-value. The time zone of the result is computed as follows:

• If neither argument has a time zone, the result has no time zone.
• If exactly one of the arguments has a time zone, or if both arguments have the same time zone, the

result has this time zone.
• If the two arguments have different time zones, an error is returned.

Example
The following function returns an xs:dateTime value from an xs:date value and an xs:time value.

fn:dateTime((xs:date("2009-04-16")), (xs:time("12:30:59")))

The returned value is the xs:dateTime value 2009-04-16T12:30:59.

fn:day-from-date function
The fn:day-from-date function returns the day component of an xs:date value that is in its localized
form.

Syntax
fn:day-from-date( date-value)

date-value
The date value from which the day component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

258 Db2 11 for z/OS: pureXML Guide

Returned value
If date-value is of type xs:date, the returned value is of type xs:integer, and the value is between 1 and 31,
inclusive. The value is the day component of date-value.

If date-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the day component of the date value for June 1, 2009.

fn:day-from-date(xs:date("2009-06-01"))

The returned value is 1.

fn:day-from-dateTime function
The fn:day-from-dateTime function returns the day component of an xs:dateTime value that is in its
localized form.

Syntax
fn:day-from-dateTime( dateTime-value)

dateTime-value
The dateTime value from which the day component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value
If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and the value is between
1 and 31, inclusive. The value is the day component of dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the day component of the dateTime value for January 31, 2009 at 8:00
p.m. in the UTC+4 time zone.

fn:day-from-dateTime(xs:dateTime("2009-01-31T20:00:00+04:00"))

The returned value is 31.

fn:days-from-duration function
The fn:days-from-duration function returns the days component of a duration.

Syntax
fn:days-from-duration( duration-value)

duration-value
The duration value from which the days component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Chapter 11. Descriptions of XQuery functions 259

Returned value
The return value depends on the type of duration-value:

• If duration-value is of type xs:dayTimeDuration or is of type xs:duration, the returned value is of type
xs:integer, and is the days component of duration-value cast as xs:dayTimeDuration. The returned value
is negative if duration-value is negative.

• If duration-value is of type xs:yearMonthDuration, the returned value is 0.
• If duration-value is an empty sequence, the returned value is an empty sequence.

The days component of duration-value cast as xs:dayTimeDuration is the integer number of days
computed as (S idiv 86400). The value S is the total number of seconds of duration-value cast as
xs:dayTimeDuration to remove the years and months components.

Examples
This function returns the days component of the duration -10 days and 0 hours.

fn:days-from-duration(xs:dayTimeDuration("-P10DT00H"))

The returned value is -10.

This function returns the days component of the duration 3 days and 55 hours.

fn:days-from-duration(xs:dayTimeDuration("P3DT55H"))

The returned value is 5. When calculating the total number of days in the duration, 55 hours is converted
to 2 days and 7 hours. The duration is equal to P5D7H which has a days component of 5 days.

fn:distinct-values function
The fn:distinct-values function returns the distinct values in a sequence.

Syntax
fn:distinct-values( sequence-expression)

sequence-expression
A sequence of atomic values, or the empty sequence. The items in the sequence can have any of the
following types:

• Numeric
• String
• Date or time types

Returned value
If sequence-expression is not the empty sequence, the returned value is a sequence that contains
xs:string values that are the distinct values in sequence-expression. Two items are distinct if they are
not equal to each other. XQuery uses the following rules to obtain a sequence of distinct values:

• If two values cannot be compared, those values are considered to be distinct.
• Values of type xs:untypedAtomic are compared using the rules for xs:string types.
• The order in which the sequence of values is returned might not be the same as the input order.
• The first value of a set of values that compare equal is returned.
• If sequence-expression is the empty sequence, the empty sequence is returned.
• For xs:double values, positive zero is equal to negative zero.
• If sequence-expression contains multiple NaN values, a single NaN value is returned.

260 Db2 11 for z/OS: pureXML Guide

Example
The following example returns the distinct values of node b:

SELECT XMLSERIALIZE(
 XMLQUERY ('declare default element namespace
 "http://posample.org";
 fn:distinct-values($d/x/b)' PASSING XMLPARSE(DOCUMENT
 '<x xmlns="http://posample.org">
 1a1.0A1</x>')
 AS "d")
 AS CLOB(1K) EXCLUDING XMLDECLARATION)
 FROM SYSIBM.SYSDUMMY1

The returned value is ("1", "a", "1.0", "A").

fn:hours-from-dateTime function
The fn:hours-from-dateTime function returns the hours component of an xs:dateTime value that is in
its localized form.

Syntax
fn:hours-from-dateTime( dateTime-value)

dateTime-value
The dateTime value from which the hours component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value
If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and the value is between
0 and 23, inclusive. The value is the hours component of dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the hours component of the dateTime value for January 31, 2009 at 2:00
p.m. in the UTC-8 time zone.

fn:hours-from-dateTime(xs:dateTime("2009-01-31T14:00:00-08:00"))

The returned value is 14.

fn:hours-from-duration function
The fn:hours-from-duration function returns the hours component of a duration value.

Syntax
fn:hours-from-duration( duration-value)

duration-value
The duration value from which the hours component is to be extracted.

duration-value is an empty sequence or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Chapter 11. Descriptions of XQuery functions 261

Returned value
The return value depends on the type of duration-value:

• If duration-value is of type xs:dayTimeDuration or is of type xs:duration, the returned value is of
type xs:integer, and is a value between -23 and 23, inclusive. The value is the hours component of
duration-value cast as xs:dayTimeDuration. The value is negative if duration-value is negative.

• If duration-value is of type xs:yearMonthDuration, the returned value is of type xs:integer and is 0.
• If duration-value is an empty sequence, the returned value is an empty sequence.

The hours component of duration-value cast as xs:dayTimeDuration is the integer number of hours
computed as ((S mod 86400) idiv 3600). The value S is the total number of seconds of duration-
value cast as xs:dayTimeDuration to remove the days and months component. The value 86400 is the
number of seconds in a day, and 3600 is the number of seconds in an hour.

Example
The following function returns the hours component of the duration 126 hours.

fn:hours-from-duration(xs:dayTimeDuration("PT126H"))

The returned value is 6. When calculating the total number of hours in the duration, 126 hours is
converted to 5 days and 6 hours. The duration is equal to P5DT6H which has an hours component of 6
hours.

fn:hours-from-time function
The fn:hours-from-time function returns the hours component of an xs:time value that is in its
localized form.

Syntax
fn:hours-from-time( time-value)

time-value
The time value from which the hours component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value
If time-value is not an empty sequence, the returned value is of type xs:integer, and the value is between
0 and 23, inclusive. The value is the hours component of time-value.

If time-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the hours component of the time value for 9:30 a.m. in the UTC-8 time
zone.

fn:hours-from-time(xs:time("09:30:00-08:00"))

The returned value is 9.

262 Db2 11 for z/OS: pureXML Guide

fn:implicit-timezone function
The fn:implicit-timezone function returns the time zone that is used when a date, time, or dateTime
value that does not have a time zone is used in a comparison or arithmetic operation.

The implicit time zone is the value of PT0S.

Syntax
fn:implicit-timezone()

Returned value
The returned implicit time zone value has type xs:dayTimeDuration.

Example
The following function returns xs:dayTimeDuration("PT0S"):

fn:implicit-timezone()

fn:minutes-from-dateTime function
The fn:minutes-from-dateTime function returns the minutes component of an xs:dateTime value
that is in its localized form.

Syntax
fn:minutes-from-dateTime( dateTime-value)

dateTime-value
The dateTime value from which the minutes component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value
If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and the value is between
0 and 59, inclusive. The value is the minutes component of dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the minutes component from the dateTime value for January 23, 2009 at
9:42 a.m. in the UTC-8 time zone.

fn:minutes-from-dateTime(xs:dateTime("2009-01-23T09:42:00-08:00"))

The returned value is 42.

fn:minutes-from-duration function
The fn:minutes-from-duration function returns the minutes component of a duration.

Syntax
fn:minutes-from-duration( duration-value)

Chapter 11. Descriptions of XQuery functions 263

duration-value
The duration value from which the minutes component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Returned value
The return value depends on the type of duration-value:

• If duration-value is of type xs:dayTimeDuration or is of type xs:duration, the returned value is of
type xs:integer and is a value between -59 and 59, inclusive. The value is the minutes component of
duration-value cast as xs:dayTimeDuration. The value is negative if duration-value is negative.

• If duration-value is of type xs:yearMonthDuration, the returned value is 0.
• If duration-value is an empty sequence, the returned value is an empty sequence.

The minutes component of duration-value cast as xs:dayTimeDuration is the integer number of minutes
computed as ((S mod 3600) idiv 60). The value S is the total number of seconds of duration-value
cast as xs:dayTimeDuration to remove the years and months components.

Example
The following function returns the minutes component of the duration 2 days, 16 hours, and 93 minutes.

fn:minutes-from-duration(xs:dayTimeDuration("P2DT16H93M"))

The returned value is 33. When calculating the total number of minutes in the duration, 93 minutes
is converted to 1 hour and 33 minutes. The duration is equal to P2DT17H33M which has a minutes
component of 33 minutes.

fn:minutes-from-time function
The fn:minutes-from-time function returns the minutes component of an xs:time value that is in its
localized form.

Syntax
fn:minutes-from-time( time-value)

time-value
The time value from which the minutes component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value
If time-value is of type xs:time, the returned value is of type xs:integer, and the value is between 0 and 59,
inclusive. The value is the minutes component of time-value.

If time-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the minutes component of the time value for 8:59 a.m. in the UTC-8 time
zone.

fn:minutes-from-time(xs:time("08:59:00-08:00"))

The returned value is 59.

264 Db2 11 for z/OS: pureXML Guide

fn:month-from-date function
The fn:month-from-date function returns the month component of a xs:date value that is in its
localized form.

Syntax
fn:month-from-date( date-value)

date-value
The date value from which the month component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

Returned value
If date-value is of type xs:date, the returned value is of type xs:integer, and the value is between 1 and 12,
inclusive. The value is the month component of date-value.

If date-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the month component of the date value for December 1, 2009.

fn:month-from-date(xs:date("2009-12-01"))

The returned value is 12.

fn:month-from-dateTime function
The fn:month-from-dateTime function returns the month component of an xs:dateTime value that is
in its localized form.

Syntax
fn:month-from-dateTime( dateTime-value)

dateTime-value
The dateTime value from which the month component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value
If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and the value is between
1 and 12, inclusive. The value is the month component of dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the month component of the dateTime value for October 31, 2009 at 8:15
a.m. in the UTC-8 time zone.

fn:month-from-dateTime(xs:dateTime("2009-10-31T08:15:00-08:00"))

The returned value is 10.

Chapter 11. Descriptions of XQuery functions 265

fn:months-from-duration function
The fn:months-from-duration function returns the months component of a duration value.

Syntax
fn:months-from-duration( duration-value)

duration-value
The duration value from which the months component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Returned value
The return value depends on the type of duration-value:

• If duration-value is of type xs:duration or is of type xs:yearMonthDuration, the returned value is of type
xs:integer, and is a value is between -11 and 11, inclusive. The value is the months component of
duration-value cast as xs:yearMonthDuration. The value is negative if duration-value is negative.

• If duration-value is of type xs:dayTimeDuration, the returned value is 0.
• If duration-value is an empty sequence, the returned value is an empty sequence.

The months component of duration-value cast as xs:yearMonthDuration is the integer number of months
remaining from the total number of months of duration-value divided by 12.

Examples
The following function returns the months component of the duration 20 years and 5 months.

fn:months-from-duration(xs:duration("P20Y5M"))

The returned value is 5.

The following function returns the months component of the yearMonthDuration -9 years and -13 months.

fn:months-from-duration(xs:yearMonthDuration("-P9Y13M"))

The returned value is -1. When calculating the total number of months in the duration, -13 months is
converted to -1 year and -1 month. The duration is equal to -P10Y1M which has a month component of -1
month.

The following function returns the months component of the duration 14 years, 11 months, 40 days, and
13 hours.

xquery fn:months-from-duration(xs:duration("P14Y11M40DT13H"))

The returned value is 11.

fn:normalize-space function
The fn:normalize-space function strips leading and trailing whitespace characters from a string and
replaces multiple consecutive whitespace characters in the string with a single blank character.

Syntax
fn:normalize-space(

source-string

)

266 Db2 11 for z/OS: pureXML Guide

source-string
A string in which whitespace is to be normalized.

source-string is an xs:string value or the empty sequence.

If source-string is not specified, the argument of fn:normalize-space is the current context item, which
is converted to an xs:string value by using the fn:string function.

Returned value
The returned value is the xs:string value that results when the following operations are performed on
source-string:

• Leading and trailing whitespace characters are removed.
• Each internal sequence of one or more adjacent whitespace characters is replaced by a single space

(U+0020) character.

Whitespace characters are the space character, (U+0020), carriage return, (U+000D), line feed, (U+000A),
and tab (U+0009).

If source-string is the empty sequence, a string of length 0 is returned.

Example
The following function removes extra whitespace characters from the string "a b c d ".

fn:normalize-space(" a b c d ")

The returned value is "a b c d".

fn:last function
The fn:last function returns the number of values in the sequence of items that is currently being
processed.

Syntax
fn:last()

Returned value
If the sequence that is currently being processed is not the empty sequence, the returned value is an
xs:integer value that is the number of values in the sequence. If the sequence that is currently being
processed is the empty sequence, the returned value is the empty sequence.

In the following cases, an error is returned:

• fn:last is separated from its context item by "/" or "//".

For example, the following expressions are not supported:

/a/b/c/fn:last
/a/b/[c/fn:last=3]

• The context node has a descendant axis or descendant-or-self axis.

For example, the following expression is not supported:

/a/b/descendant::c[fn:last()=1]

• The context node is a filter expression, and the filter expression has a step with a descendant axis or
descendant-or-self axis, or a nested filter expression.

For example, the following expression is not supported:

Chapter 11. Descriptions of XQuery functions 267

/a/(b/descendant::c)[fn:last()=1]

Example
In the sample CUSTOMER table, the customer document for customer 1003 looks like this:

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1003">
 <name>Robert Shoemaker<⁄name>
 <addr country="Canada">
 <street>1596 Baseline<⁄street>
 <city>Aurora<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N8X-7F8<⁄pcode-zip>
 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>
 <phone type="home">416-555-2937<⁄phone>
 <phone type="cell">905-555-8743<⁄phone>
 <phone type="cottage">613-555-3278<⁄phone>
<⁄customerinfo>

The following query retrieves the last phone number in the document. The query calls the fn:last function
to determine the number of phone number items, and then uses the fn:last result to point to the last
phone number.

SELECT
 XMLQUERY('declare default element namespace "http://posample.org";
 $X/customerinfo/phone[fn:last()]'
 PASSING INFO AS "X") FROM CUSTOMER WHERE CID=1003

The returned value is <phone type="cottage">613-555-3278<⁄phone>.

fn:local-name function
The fn:local-name function returns the local name property of a node.

Syntax
fn:local-name(

node

)

node
The node for which the local name is to be retrieved. If node is not specified, fn:local-name is
evaluated for the current context node.

Returned value
The returned value is an xs:string value. The value depends on whether node is specified, and the value of
node:

• If node is not specified, the local name of the context node is returned.
• If node meets any of the following conditions, a string of length 0 is returned:

– node is the empty sequence.
– node is a document node, a comment, or a text node. These nodes have no name.

• In the following cases, an error is returned:

– The context node is undefined.
– The context item is not a node.
– node is a sequence of more than one node.

• Otherwise, an xs:string value is returned that contains the local name part of the expanded name for
node.

268 Db2 11 for z/OS: pureXML Guide

Examples

The following example returns the local name for node b.

SELECT XMLQUERY (
 'declare default element namespace "http://posample.org";
 fn:local-name($d/x/b)'
 PASSING XMLPARSE(DOCUMENT
 '<x xmlns="http://posample.org"><c></c></x>')
 AS "d")
 FROM SYSIBM.SYSDUMMY1

The returned value is "b".

The following example demonstrates that fn:localname() with no argument returns the context node.

In the sample CUSTOMER table, the customer document for customer 1001 looks like this:

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1001">
 <name>Kathy Smith<⁄name>
 <addr country="Canada">
 <street>25 EastCreek<⁄street>
 <city>Markham<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N9C 3T6<⁄pcode-zip>
 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>
<⁄customerinfo>

The following example returns the local name for the context node.

SELECT
XMLSERIALIZE(
XMLQUERY('declare default element namespace "http://posample.org";
 $X/customerinfo/phone/fn:local-name()'
 PASSING INFO AS "X")
 AS CLOB(1K))
 FROM CUSTOMER WHERE CID=1001

The returned value is "phone".

fn:lower-case function
The fn:lower-case function converts a string to lowercase.

Syntax
fn:lower-case( source-string)

source-string
The string that is to be converted to lowercase.

source-string is of type xs:string, or is the empty sequence.

Returned value
If source-string is not the empty sequence, the returned value is an xs:string value that is source-string,
with each character converted to its lowercase correspondent. Every character that does not have a
lowercase correspondent is included in the returned value in its original form.

If source-string is the empty sequence, the returned value is a string of length zero.

Example
The following function converts the string "Wireless Router TB2561" to lowercase:

fn:lower-case("Wireless Router TB2561")

Chapter 11. Descriptions of XQuery functions 269

The returned value is "wireless router tb2561".

fn:matches function
The fn:matches function determines whether a string matches a given pattern.

Syntax
fn:matches( source-string , pattern

, flags

)

source-string
A string that is compared to a pattern.

source-string is a literal string, or an XQuery expression that resolves to an xs:string value or the
empty sequence.

pattern
A regular expression that is compared to source-string. A regular expression is a set of characters,
pattern-matching characters, and operators that define a string or group of strings in a search pattern.

pattern is string literal.

flags
A string literal that can contain any of the following values that control matching of pattern to source-
string:
s

Indicates that the dot (.) matches any character.

If the s flag is not specified, the dot (.) matches any character except the new line character
(#x0A).

m
Indicates that the caret (^) matches the start of any line (the position after a new line character),
and the dollar sign ($) matches the end of any line (the position before a new line character).

If the m flag is not specified, the caret (^) matches the start of the entire string, and the dollar sign
($) matches the end of the entire string.

i
Indicates that matching is case-insensitive for the letters "a" through "z" and "A" through "Z".

If the i flag is not specified, case-sensitive matching is done.

x
Indicates that whitespace characters (#x09, #x0A, #x0D, and #x20) within pattern are ignored,
unless they are within a character class. Whitespace characters in a character class are never
ignored.

If the x flag is not specified, whitespace characters are used for matching.

Returned value
If source-string is not the empty sequence, the returned value is an xs:boolean value that is true if
source-string matches pattern. The returned value is false if source-string does not match pattern.

The rules for matching are:

• If pattern does not contain the string-starting or line-starting character caret (^), or the string-ending
or line-ending character dollar sign ($), source-string matches pattern if any substring of source-string
matches pattern.

270 Db2 11 for z/OS: pureXML Guide

• If pattern contains the string-starting or line-starting character caret (^), source-string matches pattern
only if source-string matches pattern from the beginning of source-string or the beginning of a line in
source-string.

• If pattern contains the string-ending or line-ending character dollar sign ($), source-string matches
pattern only if source-string matches pattern at the end of source-string or at the end of a line of
source-string.

• The m flag determines:

– Whether a match occurs from the beginning of the string or the beginning of a line
– Whether a match occurs from the end of the string or the end of a line.

If source-string is the empty sequence, source-string is considered to be a string of length 0, and source-
string matches pattern if pattern matches a string of length 0.

Examples
Example of matching a pattern to any substring within a string: The following function determines
whether the strings "ac" or "bd" appear anywhere within the string "abbcacadbdcd".

fn:matches("abbcacadbdcd","(ac)|(bd)")

The returned value is true.

Example of matching a pattern to an entire string: The following function determines whether the
strings "ac" or "bd" match the string "bd". The caret (^) character and the dollar sign ($) character indicate
that the match must start at the beginning of the source string and end at the end of the source string.

fn:matches("bd","^(ac)|(bd)$")

The returned value is true.

Related reference
Regular expressions
A regular expression is a sequence of characters that act as a pattern for matching and manipulating
strings. Regular expressions are used in the fn:matches, fn:replace, and fn:tokenize functions.

fn:max function
The fn:max function returns the maximum of the values in a sequence.

Syntax
fn:max( sequence-expression)

sequence-expression
The empty sequence, or a sequence in which all of the items are one of the following types:

• Numeric
• String
• xs:date
• xs:dateTime
• xs:time
• xs:dayTimeDuration
• xs:yearMonthDuration

Input items of type xs:untypedAtomic are cast to xs:double. Numeric input items are converted to
the least common type that can be compared by a combination of type promotion and subtype
substitution.

Chapter 11. Descriptions of XQuery functions 271

Returned value
If sequence-expression is not the empty sequence, the returned value is a value of type
xdt:anyAtomicType that is the maximum of the values in sequence-expression. The data type of the
returned value is the same as the data type of the items in sequence-expression, or the common data type
to which the items in sequence-expression are promoted.

If sequence-expression contains one item, that item is returned. If sequence-expression is the empty
sequence, the empty sequence is returned. If the sequence includes the value NaN, NaN is returned.

Example
The following query returns the maximum of the sequence (500, 1.0E2, 40.5).

SELECT XMLSERIALIZE(
 XMLQUERY ('declare default element namespace "http://
posample.org";
 fn:max($d/x/b)' PASSING XMLPARSE(DOCUMENT
 '<x xmlns="http://posample.org">
 5001.0E240.5</x>')
 AS "d")
 AS CLOB(1K) EXCLUDING XMLDECLARATION)
 FROM SYSIBM.SYSDUMMY1

The values are promoted to the xs:double data type. The function returns the xs:double value 5.0E2,
which is serialized as 500.

fn:min function
The fn:min function returns the minimum of the values in a sequence.

Syntax
fn:min( sequence-expression)

sequence-expression
The empty sequence, or a sequence in which all of the items are one of the following types:

• Numeric
• String
• xs:date
• xs:dateTime
• xs:time
• xs:dayTimeDuration
• xs:yearMonthDuration

Input items of type xs:untypedAtomic are cast to xs:double. Numeric input items are converted to
the least common type that can be compared by a combination of type promotion and subtype
substitution.

Returned value
If sequence-expression is not the empty sequence, the returned value is a value of type xs:anyAtomicType
that is the minimum of the values in sequence-expression. The data type of the returned value is the same
as the data type of the items in sequence-expression, or the common data type to which the items in
sequence-expression are promoted.

If sequence-expression contains one item, that item is returned. If sequence-expression is the empty
sequence, the empty sequence is returned. If the sequence includes the value NaN, NaN is returned.

272 Db2 11 for z/OS: pureXML Guide

Example
The following query returns the minimum of the sequence (500, 1.0E2, 40.5).

SELECT XMLSERIALIZE(
 XMLQUERY ('declare default element namespace "http://
posample.org";
 fn:min($d/x/b)' PASSING XMLPARSE(DOCUMENT
 '<x xmlns="http://posample.org" xmlns="http://posample.org">
 5001.0E240.5</x>')
 AS "d")
 AS CLOB(1K) EXCLUDING XMLDECLARATION)
 FROM SYSIBM.SYSDUMMY1

The values are promoted to the xs:double data type. The function returns the xs:double value 4.05E1,
which is serialized as 40.5.

fn:name function
The fn:name function returns the prefix and local name parts of a node name.

Syntax
fn:name(

node

)

node
The qualified name of a node for which the name is to be retrieved. If node is not specified, fn:name is
evaluated for the current context node.

Returned value
The returned value is an xs:string value. The value depends on the value of node:

• If node meets any of the following conditions, a string of length 0 is returned:

– node is the empty sequence.
– node is a document node, a comment, or a text node. These nodes have no name.

• In the following cases, an error is returned:

– The context node is undefined.
– The context item is not a node.
– node is a sequence of more than one node.

• Otherwise, an xs:string value is returned that contains the prefix (if present) and local name for node.

Example

The following example returns the qualified name for node b.

SELECT XMLSERIALIZE(
 XMLQUERY ('declare namespace ns1="http://posample.org";
 fn:name($d/x/ns1:b)'
 PASSING XMLPARSE(DOCUMENT
 '<x xmlns:n="http://posample.org">
 <n:b><n:c></n:c></n:b></x>')
 AS "d")
 AS CLOB(1K) EXCLUDING XMLDECLARATION)
 FROM SYSIBM.SYSDUMMY1

The returned value is "n:b".

The following example demonstrates that fn:name() with no argument returns the context node.

Chapter 11. Descriptions of XQuery functions 273

In the sample CUSTOMER table, the customer document for customer 1001 looks like this:

<customerinfo xmlns="http:⁄⁄posample.org" Cid="1001">
 <name>Kathy Smith<⁄name>
 <addr country="Canada">
 <street>25 EastCreek<⁄street>
 <city>Markham<⁄city>
 <prov-state>Ontario<⁄prov-state>
 <pcode-zip>N9C 3T6<⁄pcode-zip>
 <⁄addr>
 <phone type="work">905-555-7258<⁄phone>
<⁄customerinfo>

The following example returns the qualified name for the context node.

SELECT
XMLSERIALIZE(
XMLQUERY('declare default element namespace "http://posample.org";
 $X/customerinfo/phone/fn:name()'
 PASSING INFO AS "X")
 AS CLOB(1K))
 FROM CUSTOMER WHERE CID=1001

The returned value is "phone".

fn:not function
The fn:not function returns false if the effective boolean value of an item is true. fn:not returns true if the
effective boolean value of an item is false.

Syntax
fn:not( sequence-expression)

sequence-expression
Any sequence that contains items of any type, or the empty sequence.

Returned value
The returned value is an xs:boolean value. If the effective boolean value of sequence-expression is false,
this function returns true. If the effective boolean value of sequence-expression is true, this function
returns false.

Example
The following function returns true:

fn:not("a"="b")

The following function returns false:

fn:not("false")

fn:position function
The fn:position function returns the position of the context item in the sequence that is currently being
processed.

The position function is typically used in a predicate. However it can also be used to produce the position
of each occurrence of its context item.

274 Db2 11 for z/OS: pureXML Guide

Syntax
fn:position()

Returned value
The returned value is an xs:integer value that indicates the position of the context item in the sequence
that is currently being processed. The first item in the sequence has position 1. If the context item is
undefined, an error is returned. The position function returns a deterministic result only if the sequence
that contains the context item has a deterministic order.

Examples
The following query returns the second element in the sequence of <c> elements in the document
<x xmlns="http://posample.org"><c>x</c><c>y</c><c>z</c></x>.

SELECT XMLSERIALIZE(
 XMLQUERY ('declare default element namespace "http://posample.org";
 $d/x/b/c[fn:position()=2]'
 PASSING XMLPARSE(DOCUMENT
 '<x xmlns="http://posample.org">
 <c>x</c><c>y</c><c>z</c></x>')
 AS "d")
 AS CLOB(1K) EXCLUDING XMLDECLARATION)
 FROM SYSIBM.SYSDUMMY1

The returned value is "y".

The following query returns the position of each occurrence of <a><c>.

SELECT XMLSERIALIZE(
XMLQUERY('/a/b/c/fn:position()'
 PASSING XMLPARSE(DOCUMENT
 '<a><c>c1</c><c>c2</c><c>c3</c>'))
 AS CLOB(1K))
 FROM SYSIBM.SYSDUMMY1

The returned values is "1 2 3".

fn:replace function
The fn:replace function compares each set of characters within a string to a given pattern. fn:replace
replaces the characters that match the pattern with another set of characters.

Syntax
fn:replace( source-string , pattern , replacement-string

, flags

)

source-string
A string that contains characters that are to be replaced.

source-string is a literal string, or an XQuery expression that resolves to an xs:string value or the
empty sequence.

pattern
A regular expression that is compared to source-string. A regular expression is a set of characters,
pattern-matching characters, and operators that define a string or group of strings in a search pattern.

pattern is string literal.

replacement-string
A string that contains characters that replace characters that match pattern in source-string.

Chapter 11. Descriptions of XQuery functions 275

replacement-string is an xs:string value.

flags
A string literal that can contain any of the following values that control matching of pattern to source-
string:
s

Indicates that the dot (.) matches any character.

If the s flag is not specified, the dot (.) matches any character except the new line character
(#x0A).

m
Indicates that the caret (^) matches the start of any line (the position after a new line character),
and the dollar sign ($) matches the end of any line (the position before a new line character).

If the m flag is not specified, the caret (^) matches the start of the entire string, and the dollar sign
($) matches the end of the entire string.

i
Indicates that matching is case-insensitive for the letters "a" through "z" and "A" through "Z".

If the i flag is not specified, case-sensitive matching is done.

x
Indicates that whitespace characters (#x09, #x0A, #x0D, and #x20) within pattern are ignored,
unless they are within a character class. Whitespace characters in a character class are never
ignored.

If the x flag is not specified, whitespace characters are used for matching.

Returned value
If source-string is not the empty sequence, the returned value is an xs:string value that results when the
following operations are performed on a copy of source-string:

• source-string is searched for characters that match pattern.

– If two overlapping substrings of source-string match pattern, only the substring whose first character
comes first in source-string is considered to match pattern.

– If pattern contains two or more alternative sets of characters, and the alternative sets of characters
match characters that start at the same position in source-string, the first set of characters in pattern
that matches characters in source-string is considered to match pattern.

• Each set of characters in source-string that matches pattern is replaced with replacement-string.

If pattern is not found in source-string, source-string is returned.

If pattern matches a string of length zero, an error is returned.

If source-string is the empty sequence, a string of length 0 is returned.

Example
The following function replaces all instances of "a" followed by any single character or "b" followed by any
single character with "*@".

fn:replace("abbcacadbdcd","(a(.))|(b(.))","*@")

The returned value is "*@*@*@*@*@cd".

Related reference
Regular expressions

276 Db2 11 for z/OS: pureXML Guide

A regular expression is a sequence of characters that act as a pattern for matching and manipulating
strings. Regular expressions are used in the fn:matches, fn:replace, and fn:tokenize functions.

fn:round function
The fn:round function returns the integer that is closest to the specified numeric value.

Syntax
fn:round( numeric-value)

numeric-value
An atomic value or an empty sequence.

If numeric-value is an atomic value, it has one of the following types:

• xs:double
• xs:decimal
• xs:integer
• A type that is derived from any of the previously listed types

Returned value
If numeric-value is not the empty sequence, the returned value is the integer that is closest to numeric-
value. The data type of the returned value depends on the data type of numeric-value:

• If numeric-value is xs:double, xs:decimal or xs:integer, the value that is returned has the same type as
numeric-value.

• If numeric-value has a data type that is derived from xs:double, xs:decimal or xs:integer, the value that
is returned has the direct parent data type of numeric-value.

If numeric-value is the empty sequence, the returned value is the empty sequence.

Examples
Example with a positive argument: The following function returns the rounded value of 0.5:

fn:round(0.5)

The returned value is 1.

Example with a negative argument: The following function returns the rounded value of (-1.5):

fn:round(-1.5)

The returned value is -1.

fn:seconds-from-datetime function
The fn:seconds-from-dateTime function returns the seconds component of an xs:dateTime value
that is in its localized form.

Syntax
fn:seconds-from-dateTime( dateTime-value)

dateTime-value
The dateTime value from which the seconds component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Chapter 11. Descriptions of XQuery functions 277

Returned value
If dateTime-value is of type xs:dateTime, the returned value is of type xs:decimal, and the value is greater
than or equal to 0 and less than 60. The value is the seconds and fractional seconds component of
dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Examples
The following function returns the seconds component of dateTime value for February 8, 2009 at 2:16:23
p.m. in the UTC-8 time zone.

fn:seconds-from-dateTime(xs:dateTime("2009-02-08T14:16:23-08:00"))

The returned value is 23.

The following function returns the seconds component of dateTime value for June 23, 2009 at 9:16:20.43
a.m. in the UTC time zone.

fn:seconds-from-dateTime(xs:dateTime("2009-06-23T09:16:20.43Z"))

The returned value is 20.43.

fn:seconds-from-duration function
The fn:seconds-from-durationfunction returns the seconds component of a duration.

Syntax
fn:seconds-from-duration( duration-value)

duration-value
The duration value from which the seconds component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Returned value
The return value depends on the type of duration-value:

• If duration-value is of type xs:dayTimeDuration, or is of type xs:duration, the returned value is of
type xs:decimal, and is a value greater than -60 and less than 60. The value is the seconds and
fractional seconds component of duration-value cast as xs:dayTimeDuration. The value is negative if
duration-value is negative.

• If duration-value is of type xs:yearMonthDuration, the returned value is of type xs:integer and is 0.
• If duration-value is an empty sequence, the returned value is an empty sequence.

The seconds and fractional seconds component of duration-value cast as xs:dayTimeDuration is
computed as (S mod 60). The value S is the total number of seconds and fractional seconds of
duration-value cast as xs:dayTimeDuration to remove the years and months components.

Example
The following function returns the seconds component of the duration 150.5 seconds.

fn:seconds-from-duration(xs:dayTimeDuration("PT150.5S"))

278 Db2 11 for z/OS: pureXML Guide

The returned value is 30.5. When calculating the total number of seconds in the duration, 150.5 seconds
is converted to 2 minutes and 30.5 seconds. The duration is equal to PT2M30.5S which has a seconds
component of 30.5 seconds.

fn:seconds-from-time function
The fn:seconds-from-time function returns the seconds component of an xs:time value that is in its
localized form.

Syntax
fn:seconds-from-time( time-value)

time-value
The time value from which the seconds component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value
If time-value is of type xs:time, the returned value is of type xs:decimal, and the value is greater than or
equal to zero and less than 60. The value is the seconds and fractional seconds component of time-value.

If time-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the seconds component of the time value for 08:59:59 a.m. in the UTC-8
time zone.

fn:seconds-from-time(xs:time("08:59:59-08:00"))

The returned value is 59.

fn:starts-with function
The fn:starts-with function determines whether a string begins with a given substring. The substring is
matched using the default collation.

Syntax
fn:starts-with( string , substring)

string
The string in which to search for substring.

string has the xs:string data type, or is the empty sequence. If string is the empty sequence, string is
set to a string of length 0.

substring
The substring to search for.

substring has the xs:string data type, or is the empty sequence.

Returned value
The returned value is the xs:boolean value true if either of the following conditions are satisfied:

• substring occurs at the beginning of string.
• substring is an empty sequence or a string of length zero.

Chapter 11. Descriptions of XQuery functions 279

Otherwise, the returned value is false.

Example
The following function determines whether the string 'Test literal' begins with the string 'lite'.

fn:starts-with('Test literal','lite')

The returned value is false.

fn:string function
The fn:string function returns the string representation of a value.

Syntax
fn:string(

value

)

value
The value that is to be represented as a string.

value is a node or an atomic value, or is the empty sequence.

If value is not specified, fn:string is evaluated for the current context item. If the current context item
is undefined, an error is returned.

Returned value
If value is not the empty sequence, an xs:string value is returned:

• If value is a node, the returned value is the string value property of the value node.
• If value is an atomic value, the returned value is the result of casting value to the xs:string type.

If value is the empty sequence, the result is a string of length 0.

Example
The following function returns the string representation of 123:

fn:string(xs:integer(123))

The returned value is '123'.

fn:string-length function
The fn:string-length function returns the length of a string.

Syntax
fn:string-length(

source-string

)

source-string
The string for which the length is to be returned.

source-string has the xs:string data type, or is an empty sequence.

280 Db2 11 for z/OS: pureXML Guide

Returned value
If source-string is not the empty sequence, the returned value is an xs:integer value that is the number of
characters in source-string.

If source-string is the empty sequence, the returned value is the xs:integer value 0.

If source-string is not specified, the argument of fn:string-length defaults to the string value of the context
item. If the context item is undefined, an error is raised.

Example
The following function returns the length of the string "Test literal".

fn:string-length("Test literal")

The returned value is 12.

fn:substring function
The fn:substring function returns a substring of a string.

Syntax
fn:substring( source-string , start

, length

)

source-string
The string from which the substring is retrieved.

source-string has the xs:string data type, or is an empty sequence.

start
The starting position in source-string of the substring. The first position of source-string is 1. If
start<=0, start is set to 1.

start has the xs:double data type.

length
The length of the substring. The default for length is the length of source-string. If start+length-1 is
greater than the length of source-string, length is set to (length of source-string)-start+1.

length has the xs:double data type.

Returned value
If source-string is not the empty sequence, the returned value is an xs:string value that is the substring of
source-string that starts at position start and is length bytes. If source-string is the empty sequence, the
result is a string of length 0.

Example
The following function returns seven characters starting at the sixth character of the string 'Test literal'.

fn:substring('Test literal',6,7)

The returned value is 'literal'.

Chapter 11. Descriptions of XQuery functions 281

fn:sum function
The fn:sum function returns the sum of the values in a sequence.

Syntax
fn:sum( sequence-expression)

sequence-expression
A sequence that contains items of any of the following atomic types, or an empty sequence:

• xs:double
• xs:decimal
• xs:integer
• A type that is derived from any of the previously listed types
• xs:dayTimeDuration
• xs:yearMonthDuration
• xs:untypedAtomic

All values in the sequence must be of the same type or a derived type of the type, or must be
promotable to a single common type. An xs:untypedAtomic value is promoted to the xs:double data
type. A derived type is promoted to its direct parent data type.

Returned value
If sequence-expression is not the empty sequence, the returned value is the sum of the values in
sequence-expression. The data type of the returned value is the same as the data type of the items in
sequence-expression, or the data type to which the items in sequence-expression are promoted.

If sequence-expression is the empty sequence, fn:sum returns 0.0E0.

Example
The following function returns the sum of the sequence (5, 1.0E2, 4.5):

fn:sum(5, 1.0E2, 40.5)

The values are promoted to the xs:double data type. The returned value is 1.455E2.

fn:timezone-from-date function
The fn:timezone-from-date function returns the time zone component of an xs:date value.

Syntax
fn:timezone-from-date( date-value)

date-value
The date value from which the time zone component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

Returned value
If date-value is of type xs:date and has an explicit time zone component, the returned value is of type
xs:dayTimeDuration, and the value is between -PT14H hours and PT14H, inclusive. The value is the
deviation of the date-value time zone component from the UTC time zone.

282 Db2 11 for z/OS: pureXML Guide

If date-value does not have an explicit time zone component or is an empty sequence, the returned value
is an empty sequence.

Example
The following function returns the time zone component of the date value for March 13, 2009 in the
UTC-8 time zone.

fn:timezone-from-date(xs:date("2009-03-13-08:00"))

The returned value is -PT8H.

fn:timezone-from-dateTime function
The fn:timezone-from-dateTime function returns the time zone component of an xs:dateTime value.

Syntax
fn:timezone-from-dateTime( dateTime-value)

dateTime-value
The dateTime value from which the time zone component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value
If dateTime-value is of type xs:dateTime and has an explicit time zone component, the returned value
is of type xs:dayTimeDuration, and the value is between -PT14H and PT14H, inclusive. The value is the
deviation of the dateTime-value time zone component from the UTC time zone.

If dateTime-value does not have an explicit time zone component, or is an empty sequence, the returned
value is an empty sequence.

Examples
The following function returns the time zone component of the dateTime value for October 30, 2009 at
7:30 a.m. in the UTC-8 time zone.

fn:timezone-from-dateTime(xs:dateTime("2009-10-30T07:30:00-08:00"))

The returned value is -PT8H.

The following function returns the time zone component of the dateTime value for January 1, 2009 at
2:30 p.m. in the UTC+10:30 time zone.

fn:timezone-from-dateTime(xs:dateTime("2009-01-01T14:30:00+10:30"))

The returned value is PT10H30M.

fn:timezone-from-time function
The fn:timezone-from-time function returns the time zone component of an xs:time value.

Syntax
fn:timezone-from-time( time-value)

Chapter 11. Descriptions of XQuery functions 283

time-value
The time value from which the time zone component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value
If time-value is of type xs:time and has an explicit time zone component, the returned value is of type
xs:dayTimeDuration, and the value is between -PT14H and PT14H, inclusive. The value is the deviation of
the time-value time zone component from UTC time zone.

If time-value does not have an explicit time zone component, or is an empty sequence, the returned value
is an empty sequence.

Examples
The following function returns the time zone component of the time value for 12 noon in the UTC-5 time
zone.

fn:timezone-from-time(xs:time("12:00:00-05:00"))

The returned value is -PT5H.

In the following function, the time value for 1:00 p.m. does not have a time zone component.

fn:timezone-from-time(xs:time("13:00:00"))

The returned value is the empty sequence.

fn:tokenize function
The fn:tokenize function breaks a string into a sequence of substrings.

Syntax
fn:tokenize(source-string , pattern

, flags

)

source-string
A string that is to be broken into a sequence of substrings.

source-string is a literal string, or an XQuery expression that resolves to an xs:string value or the
empty sequence.

pattern
The delimiter between substrings in source-string.

pattern is a string literal that contains a regular expression. A regular expression is a set of characters,
pattern-matching characters, and operators that define a string or group of strings in a search pattern.

flags
A string literal that can contain any of the following values that control matching of pattern to source-
string:
s

Indicates that the dot (.) matches any character.

If the s flag is not specified, the dot (.) matches any character except the new line character
(#x0A).

m
Indicates that the caret (^) matches the start of any line (the position after a new line character),
and the dollar sign ($) matches the end of any line (the position before a new line character).

284 Db2 11 for z/OS: pureXML Guide

If the m flag is not specified, the caret (^) matches the start of the entire string, and the dollar sign
($) matches the end of the entire string.

i
Indicates that matching is case-insensitive for the letters "a" through "z" and "A" through "Z".

If the i flag is not specified, case-sensitive matching is done.

x
Indicates that whitespace characters (#x09, #x0A, #x0D, and #x20) within pattern are ignored,
unless they are within a character class. Whitespace characters in a character class are never
ignored.

If the x flag is not specified, whitespace characters are used for matching.

Returned value
If source-string is not the empty sequence or a zero-length string, the returned value is a sequence of
xs:string values that results when the following operations are performed on source-string:

• source-string is searched for characters that match pattern.
• If pattern contains two or more alternative sets of characters, and the alternative sets of characters

match characters that start at the same position in source-string, the first set of characters in pattern
that matches characters in source-string is considered to match pattern.

• Each set of characters that does not match pattern becomes an item in the result sequence.
• If pattern matches characters at the beginning of source-string, the first item in the returned sequence is

a string of length 0.
• If two successive matches for pattern are found within source-string, a string of length 0 is added to the

sequence.
• If pattern matches characters at the end of source-string, the last item in the returned sequence is a

string of length 0.

If pattern is not found in source-string, source-string is returned.

If pattern matches a string of length zero, an error is returned.

If source-string is the empty sequence, or is a zero-length string, the result is the empty sequence.

Example
The following function creates a sequence from the string "?A?B?C?D?" by removing the question mark (?)
characters and creating a sequence from the remaining characters.

fn:tokenize("?A?B?C?D?","\?")

The returned value is the sequence ("", "A", "B", "C", "D", "").

Related reference
Regular expressions
A regular expression is a sequence of characters that act as a pattern for matching and manipulating
strings. Regular expressions are used in the fn:matches, fn:replace, and fn:tokenize functions.

fn:translate function
The fn:translate function replaces selected characters in a string with replacement characters.

Syntax
fn:translate( source-string , original-string , replacement-string)

Chapter 11. Descriptions of XQuery functions 285

source-string
The string in which characters are to be converted.

source-string has the xs:string data type, or is the empty sequence.

original-string
A string that contains the characters that can be converted.

original-string has the xs:string data type.

replacement-string
A string that contains the characters that replace the characters in original-string.

replacement-string has the xs:string data type.

If the length of replacement-string is greater than the length of original-string, the additional
characters in replacement-string are ignored.

Returned value
If source-string is not the empty sequence, the returned value is the xs:string value that results when the
following operations are performed:

• For each character in source-string that appears in original-string, replace the character in source-string
with the character in replacement-string that appears at the same position as the character in original-
string.

If the length of original-string is greater than the length of replacement-string, delete each character in
source-string that appears in original-string, but the character position in original-string does not have a
corresponding position in replacement-string.

If a character appears more than once in original-string, the position of the first occurrence of the
character in original-string determines the character in replacement-string that is used.

• For each character in source-string that does not appear in original-string, leave the character as it is.

If source-string is the empty sequence, a string of length 0 is returned.

Example
The following function replaces the character a with the character A and deletes any - characters from the
string "—aaa—".

fn:translate("---aaa---","a-","A")

The returned value is "AAA".

fn:upper-case function
The fn:upper-case function converts a string to uppercase.

Syntax
fn:upper-case( source-string)

source-string
The string that is to be converted to uppercase.

source-string has the xs:string data type, or is an empty sequence.

286 Db2 11 for z/OS: pureXML Guide

Returned value
If source-string is not an empty sequence, the returned value is the xs:string value source-string,
with each character converted to its uppercase correspondent. Every character that does not have an
uppercase correspondent is included in the returned value in its original form.

If source-string is the empty sequence, the returned value is a string of length zero.

Examples
The following function converts the string 'Test literal 1' to uppercase.

fn:upper-case("Test literal 1")

The returned value is "TEST LITERAL 1".

The argument of the following function resolves to "ii".

fn:upper-case("ıi")

The returned value is "II".

fn:year-from-date function
The fn:year-from-date function returns the year component of an xs:date value that is in its localized
form.

Syntax
fn:year-from-date( date-value)

date-value
The date value from which the year component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

Returned value
If date-value is of type xs:date, the returned value is of type xs:integer, The value is the year component of
the date-value, a non-negative value.

If date-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the year component of the date value for October 29, 2009.

fn:year-from-date(xs:date("2009-10-29"))

The returned value is 2009.

fn:year-from-datetime function
The fn:year-from-dateTime function returns the year component of an xs:dateTime value that is in its
localized form.

Syntax
fn:year-from-dateTime( dateTime-value)

Chapter 11. Descriptions of XQuery functions 287

dateTime-value
The dateTime value from which the year component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value
If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer. The value is the year
component of the dateTime-value, a non-negative value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example
The following function returns the year component of the dateTime value for October 29, 2009 at 8:00
a.m. in the UTC-8 time zone.

fn:year-from-dateTime(xs:dateTime("2009-10-29T08:00:00-08:00"))

The returned value is 2009.

fn:years-from-duration function
The fn:years-from-duration function returns the years component of a duration.

Syntax
fn:years-from-duration( duration-value)

duration-value
The duration value from which the years component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Returned value
The return value depends on the type of duration-value:

• If duration-value is of type xs:yearMonthDuration or is of type xs:duration, the returned value is of type
xs:integer. The value is the years component of duration-value cast as xs:yearMonthDuration. The value
is negative if duration-value is negative.

• If duration-value is of type xs:dayTimeDuration, the returned value is of type xs:integer and is 0.
• If duration-value is an empty sequence, the returned value is an empty sequence.

The years component of duration-value cast as xs:yearMonthDuration is the integer number of years
determined by the total number of months of duration-value cast as xs:yearMonthDuration divided by 12.

Examples
The following function returns the years component of the duration -4 years, -11 months, and -320 days.

fn:years-from-duration(xs:duration("-P4Y11M320D"))

The returned value is -4.

The following function returns the years component of the duration 9 years and 13 months.

fn:years-from-duration(xs:yearMonthDuration("P9Y13M"))

288 Db2 11 for z/OS: pureXML Guide

The returned value is 10. When calculating the total number of years in the duration, 13 months is
converted to 1 year and 1 month. The duration is equal to P10Y1M which has a years component of 10
years.

Chapter 11. Descriptions of XQuery functions 289

290 Db2 11 for z/OS: pureXML Guide

Information resources for Db2 11 for z/OS and related
products

Information about Db2 11 for z/OS and products that you might use in conjunction with Db2 11 is
available online in IBM Documentation.

You can find the complete set of product documentation for Db2 11 for z/OS in IBM Documentation.

You can also download other PDF format manuals for Db2 11 for z/OS from IBM Documentation in PDF
format manuals for Db2 11 for z/OS (Db2 for z/OS in IBM Documentation).

© Copyright IBM Corp. 2007, 2021 291

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/home/src/tpc/db2z_11_prodhome.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_11.0.0/home/src/tpc/db2z_pdfmanuals.html

292 Db2 11 for z/OS: pureXML Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

© Copyright IBM Corp. 2007, 2021 293

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as shown below:

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. (enter the year or years).

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

General-use Programming Interface and Associated Guidance
Information

This information is intended to help you write applications that access XML data on Db2 11 for
z/OS servers. This information primarily documents General-use Programming Interface and Associated
Guidance Information provided by Db2 11 for z/OS. However, this information also documents Product-
sensitive Programming Interface and Associated Guidance Information.

General-use Programming Interface and Associated Guidance Information
General-use Programming Interfaces allow the customer to write programs that obtain the services of
Db2 11 for z/OS.

Product-sensitive Programming Interface and Associated Guidance Information
Product-sensitive Programming Interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this IBM software product. Use of such
interfaces creates dependencies on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written
to such interfaces may need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is identified where it
occurs by the following markings:

Product-sensitive Programming Interface and Associated Guidance Information...

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at: http://www.ibm.com/legal/copytrade.shtml.

294 Db2 11 for z/OS: pureXML Guide

http://www.ibm.com/legal/copytrade.shtml

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions:

Applicability: These terms and conditions are in addition to any terms of use for the IBM website.

Personal use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Notices 295

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

296 Db2 11 for z/OS: pureXML Guide

Glossary

The glossary is available in IBM Knowledge Center.

See the Glossary topic for definitions of Db2 for z/OS terms.

© Copyright IBM Corp. 2007, 2021 297

http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.dita

298 Db2 11 for z/OS: pureXML Guide

Index

A
abbreviated syntax

path expression 199
abs function 247
accessibility

keyboard x
shortcut keys x

adding nodes 236
adjust-date-to-timezone function 248
adjust-datetime-to-timezone function 249
adjust-time-to-timezone function 251
application development

XML data 111
archiving

XML data 125
arithmetic expressions 201
atomic values 3
attribute axis 195
attribute nodes 8
attributes

namespace declaration 214
avg function 252
axis

attribute 195
child 195
descendant 195
descendant-or-self 195
parent 195
self 195

axis step 193

B
binary XML format

inserting XML data 35
serializing XML data 79
utilities 99
XML data type 14

binding IBM Data Server Driver for JDBC and SQLJ
packages

XML schema repository setup 25
boolean function 253
boundary whitespace

declaration 184
direct element constructors 215

boundary-space declarations 184
byte order mark (BOM)

XML data 127

C
case sensitivity

XQuery 163
castable expressions 242
casting

SQL types to XML types 59

casting (continued)
XML schema types to SQL types 59
XML schema types to SQL types, examples 59

casts between XML schema data types
list 179

CCSID-to-encoding-name mappings
textual XML data 152

CHECK DATA utility
XML support 99

CHECK INDEX utility
XML support 99

child axis 195
comment node 11
comments

constructing, XQuery 221
direct constructors 221
XPath 164

compare function 254
comparison

general 206
comparison expressions

nodes 208
values 204
XQuery 204

concat function 255
conditional expressions 232
constructors

built-in types 167
direct comment 221
direct element 211
direct processing instruction 220
document node 219
enclosed expressions 210
in-scope namespaces 217
namespace declaration attributes 214
processing instruction 220
XML 210

contains function 255
context item expression 191
copy-namespace declarations 184
count function 256
current-date function 256
current-dateTime function 257
current-time function 257

D
data function 257
data model generation

XQuery 12
data types

promotion 187
substitution 188
testing cast of a value (DB2 XQuery) 242
XML indexes 88
xs:dayTimeDuration 176
xs:decimal 171

Index 299

data types (continued)
xs:duration 177
xs:yearMonthDuration 179

dateTime function 258
day-from-date function 258
day-from-dateTime function 259
days-from-duration function 259
dayTimeDuration data type

description 176
normalized form 176

DB2 XQuery functions
abs 247
adjust-date-to-timezone 248
adjust-time-to-timezone 251
avg 252
boolean 253
compare 254
concat 255
contains 255
count 256
current-date 256
current-dateTime 257
current-time 257
data 257
dateTime 258
day-from-date 258
day-from-dateTime 259
days-from-duration 259
hours-from-dateTime 261
hours-from-duration 261
hours-from-time 262
implicit-timezone function 263
minutes-from-dateTime 263
minutes-from-duration 263
minutes-from-time 264
month-from-date 265
month-from-dateTime 265
months-from-duration 266
normalize-space 266
not 274
round 277
seconds-from-dateTime 277
seconds-from-duration 278
seconds-from-time 279
string 280
string-length 280
substring 281
sum 282
timezone-from-date 282
timezone-from-dateTime 283
timezone-from-time 283
year-from-date 287
year-from-dateTime 287
years-from-duration 288

Db2-supplied stored procedures
XML schema 108

declarations
boundary-space 184
copy-namespaces 184
default namespace 186
namespace 185

default column value
XMLTABLE 71

default namespace declaration

default namespace declaration (continued)
XQuery 186

defining stored procedures
XML schema repository 25

delete expression 234
deleting nodes 234
descendant axis 195
descendant-or-self axis 195
differences in XML data

before and after storage and retrieval 81
direct constructors

comment 221
description 210
element 211
processing instruction 220
whitespace in element 215

disability x
distinct-values function 260
document node constructors

description 210
document nodes

constructing 219
description 5

documents, XML
deleting 40

down-level clients
retrieving XML data 74

DSN_XMLVALIDATE
choosing XML schema 56
moving from user-defined function to built-in function
56
XML schema validation 55

DTDs
XML parsing 45

duration data type
description 177
normalized form 177

E
element nodes 6
elements

direct constructors 211
in-scope namespaces 217

embedded SQL applications
host variables, XML data 112
XML data 112

enclosed expressions
constructors 210

encoding considerations
XML in Java 129

encoding scenarios
internally encoded XML 130
XML 130

encoding-name-to-CCSID mappings
textual XML data 139

entity references
predefined 189

evaluating expressions 187
examples

XML column updates 122
XML index 91–97
XSR_ADDSCHEMADOC 108
XSR_COMPLETE 108

300 Db2 11 for z/OS: pureXML Guide

examples (continued)
XSR_REGISTER 108
XSR_REMOVE 108

EXEC SQL utility
XML support 99

explicit XML parsing
XMLPARSE 44

expressions
arithmetic 201
atomization 187
castable 242
conditional 232
constructing sequences 200
constructors, description 210
constructors, namespace declaration attributes 214
context item 191
delete 234
direct comment constructors 221
direct element constructors 211
direct processing instruction constructors 220
document node constructors 219
enclosed in constructors 210
filter 201
FLWOR, examples 230
FLWOR, for and let clauses together 225
FLWOR, for and let clauses, overview 223
FLWOR, for and let clauses, variable scope 225
FLWOR, for clauses 223
FLWOR, let clauses 224
FLWOR, order by clauses 228
FLWOR, overview 221
FLWOR, return clauses 230
FLWOR, syntax 222
FLWOR, where clauses 227
in-scope namespaces constructors 217
insert 236
logical 209
node comparisons 208
parenthesized 190
path 192
processing 187
processing instruction constructors 220
replace 239
sequence 200
subtype substitution 188
type promotion 187
value comparisons 204

external encoding
XML data 127

external encoding input scenarios
XML data 132

F
filter expression 201
FLWOR expressions

example 230
for and let clauses, same expression 225
for and let clauses, variable scope 225
for clauses 223
let clauses 224
order by clauses 228
overview 221
return clauses 230

FLWOR expressions (continued)
syntax 222
where clauses 227

for clause
XQuery 223

function call
XQuery 191

functions
adjust-date-to-timezone 248
adjust-time-to-timezone 251
current-date 256
current-dateTime 257
current-time 257
dateTime 258
day-from-date 258
day-from-dateTime 259
days-from-duration 259
distinct-values 260
hours-from-dateTime 261
hours-from-duration 261
hours-from-time 262
implicit-timezone 263
last 267
local-name 268
lower-case 269
matches 270
max 271
min 272
minutes-from-dateTime 263
minutes-from-duration 263
minutes-from-time 264
month-from-date 265
month-from-dateTime 265
months-from-duration 266
name 273
position 274
replace 275
seconds-from-dateTime 277
seconds-from-duration 278
seconds-from-time 279
starts-with 279
timezone-from-date 282
timezone-from-dateTime 283
timezone-from-time 283
tokenize 284
translate 285
upper-case 286
year-from-date 287
year-from-dateTime 287
years-from-duration 288

G
general comparisons

XQuery 206
general-use programming information, described 294

H
host variables

XML in assembler 113
XML in C language 114
XML in COBOL 114, 115

Index 301

host variables (continued)
XML in embedded SQL applications 112
XML in PL/I 116, 117

hours-from-dateTime function 261
hours-from-duration function 261
hours-from-time function 262

I
if-then-else expressions

description 232
ignorable whitespace

removing, XML schema validation 47
implicit serialization

encoding scenarios, XML data 134
implicit-timezone function 263
implicitly created objects

XML columns 31
in-scope namespaces

constructed elements 217
index

access methods
XML indexes 90

indexing
XML data 85

inline COPY
XML support 99

inline statistics
XML support 99

input of XML data 128
insert expression 236
inserting nodes 236
internal encoding

background information 127
description 127
XML data input 130

K
kind test 196

L
last function 267
let clause

description 224
links

non-IBM Web sites
295

LISTDEF utility
XML support 99

literal
XQuery 188

LOAD utility
XML support 99

local-name function 268
lock avoidance

XML versions 41
logical expression 209
lower-case function 269

M
matches function 270
max function 271
min function 272
minutes-from-dateTime function 263
minutes-from-duration function 263
minutes-from-time function 264
month-from-date function 265
month-from-dateTime function 265
months-from-duration function 266
moving from user-defined function to built-in function

DSN_XMLVALIDATE 56

N
name function 273
name test 196
namespace declarations

attributes 214
XML index 87
XQuery 185

namespaces
binding a prefix 214
default element 214
description 162
in-scope 217
setting default 214

native SQL routines
XML parameters 72

node test 196
node values

replacing 239
nodes

adding 236
attribute 8
comment 11
comparing 208
constructing comment 221
constructing document 219
constructing processing instruction 220
deleting 234
direct comment constructors 221
document 5
element 6
overview 3
processing instruction 10
replacing 239
text 9

normalize-space function 266
normalized form

dayTimeDuration data type 176
duration data type 177
yearMonthDuration data type 179

not function 274
numeric data types

range 172
numeric literal 188

O
order by clause 228
order of processing

302 Db2 11 for z/OS: pureXML Guide

order of processing (continued)
order by clauses 228

ordinality column
XMLTABLE 71

output of XML data 129

P
parent axis 195
parenthesized expression

XQuery 190
parsing

XML 44
partial XML revalidation

XML type modifier 53
path expression

abbreviated syntax 199
definition 192

pattern expression
XML index 86

position function 274
predefined entity reference

XQuery 189
predicate

XQuery 198
processing instruction node

constructing 220
description 10

product-sensitive programming information, described 294
programming interface information, described 294
prolog

boundary-space declarations 184
XQuery 183

prologs
copy-namespace declarations 184

PSPI symbols 294
publishing functions

special character handling 78
XML 75

pureXML
data model 2
software prerequisites 18
tutorial 15

Q
qualified names (QNames)

XQuery 162
queries

XML data 62
querying XML

with XMLTABLE 67
XMLTABLE overview 67

QUIESCE utility
XML support 99

R
REBUILD INDEX utility

XML support 99
RECOVER INDEX utility

XML support 99
RECOVER TABLESPACE utility

RECOVER TABLESPACE utility (continued)
XML support 99

regular expression
description 243
syntax 243

removing nodes
XQuery 234

REORG INDEX utility
XML support 99

REORG TABLESPACE utility
XML support 99

REPAIR utility
XML support 99

replace expression 239
replace function 275
replacing node values

XQuery 239
replacing nodes

XQuery 239
REPORT utility

XML support 99
return clause 230
round function 277
routines

XML variables 72
RUNSTATS utility

XML support 99

S
seconds-from-dateTime function 277
seconds-from-duration function 278
seconds-from-time function 279
self axis 195
sequence expression 200
sequences

atomization 187
constructing 200
description 2

serialization, XML
explicit 79
implicit 79

shortcut keys
keyboard x

software prerequisites
pureXML 18

special characters
publishing functions 78

SQL/XML functions
XMLTABLE overview 67
XMLTABLE usage 67

starts-with function 279
statically known namespaces 217
step

axis 193
string function 280
string literals

XQuery 188
string-length function 280
substring function 281
subtype substitution 188
sum function 282
syntax

FLWOR expressions 222

Index 303

syntax (continued)
XQuery expression 183

syntax diagram
how to read xi

T
table spaces

XML data 29
tables

adding XML columns 29
creating with XML columns 29

text node 9
textual XML data

CCSID-to-encoding-name mappings 152
encoding-name-to-CCSID mappings 139
serializing 79

time zone
implicit 263

timezone-from-date function 282
timezone-from-dateTime function 283
timezone-from-time function 283
tokenize function 284
translate function 285
trigger

XML column 43
tutorial

pureXML 15
type promotion

XQuery 187
types

generic 168
numeric, range 172
overview 167
untyped data 169
xs:anyAtomicType 169
xs:anySimpleType 169
xs:anyType 168
xs:boolean 173
xs:date 173
xs:dateTime 174
xs:double 171
xs:integer 172
xs:string 170
xs:time 178
xs:untyped 169
xs:untypedAtomic 170

U
UNIQUE keyword

XML index 89
UNLOAD utility

XML support 99
untyped data 169
upper-case function 286
URI

binding a namespace prefix 214

V
validation

XML 47

value comparisons 204
variable references

XQuery 190
variables

in scope, for and let clauses 225
positional, for clauses 223

W
where clause

XQuery 227
whitespace

boundary 184
in direct element constructors 215
removal, XML schema validation 47
XMLPARSE 44
XQuery 164

WLM environment setup
C language, XML schema repository 19
Java language, XML schema repository 21

X
XML

application development 111
casting variables to XML types 66
column updates 122
data retrieval 62, 124
data types 122
filtering with XMLEXISTS 65
inserting XMLTABLE results 68
overview of Db2 for z/OS support 1
parameters in native SQL routines 72
parsing 44
querying with XMLQUERY 63
querying with XMLTABLE 67
querying with XMLTABLE, example 69
validation 47
variables in routines 72

XML character reference 190
XML columns

altering definitions 29
defining 29
implicitly created objects 31
retrieving entire XML document 63

XML data
archiving 125
before and after storage and retrieval 81
embedded SQL applications 112
encoding considerations for input 128
encoding considerations for Java 129
encoding considerations for output 129
encoding scenarios for input, internally encoded 130
encoding scenarios, explicitly serializing 137
encoding scenarios, implicitly serializing 134
external encoding 127
external encoding input scenarios 132
indexing 85
inserting in a table 35
internal encoding 127
Java applications 111, 129
retrieving from tables, embedded SQL applications 119
storage structure 31

304 Db2 11 for z/OS: pureXML Guide

XML data (continued)
updating entire document 37
updating in a table 37
updating part of a document 38
updating, embedded SQL applications 117
working with 29

XML data retrieval
earlier clients 74
entire XML document 63
using XMLTABLE 67
XMLTABLE advantages 68

XML data type 14
XML declaration

XML data 127
XML document

versions 41
XML documents

determining whether validated 58
XML encoding considerations

input 128
output 129

XML index
data types 88
data types, XML schema 88
examples 91–97
namespace declaration 87
pattern expression 86
UNIQUE keyword 89

XML model
comparison to relational model 13

XML publishing functions
description 75
handling special characters 78

XML revalidation
XML type modifier 53

XML schema
data types, casts 179
index data types 88

XML schema registration
stored procedure examples 108

XML schema repository
binding stored procedures 25
setting up 18
support in Db2 for z/OS 107
testing 26

XML schema repository stored procedures
defining 25
WLM environment, C language 19
WLM environment, Java language 21

XML schema to SQL
casting 59

XML schema validation
choosing XML schema, DSN_XMLVALIDATE 56
DSN_XMLVALIDATE 55
XML type modifier 48
XML type modifier, choosing schema 51

XML type modifier
adding during ALTER TABLE 29
adding during CREATE TABLE 29
choosing XML schema 51
partial XML revalidation 53
XML schema validation 48

XML versions 41
XML virtual storage

XML virtual storage (continued)
limitation of usage 34

XMLCAST
casting to from XML to SQL 59

XMLEXISTS
casting variables to XML types 66
filtering XML data 65

XMLPARSE
DTD handling 45
whitespace handling 44

XMLQUERY
casting variables to XML types 66
description 63
returning empty sequences 64
returning non-empty sequences 63

XMLSERIALIZE
earlier clients 74

XMLTABLE function
advantages 68
example 68, 69, 71
overview 67

XMLVALA
limitation of XML virtual storage usage for a user 34

XMLVALS
limitation of XML virtual storage usage for a subsystem
34

XMLXSROBJECTID
checking for XML validation 58

XPath
numeric data types 171
when to use 161

XQuery
date and time types 173
expressions 187
function reference 247
overview 159
primary expressions 188
updating expressions 234
variable reference 190
when to use 161

XQuery expression
example 183
general format 183

XQuery expression, structure 183
XQuery function call 191
XQuery functions

adjust-datetime-to-timezone 249
distinct-values 260
last 267
local-name 268
lower-case 269
matches 270
max 271
min 272
name 273
position 274
replace 275
starts-with 279
timezone-from-dateTime 283
tokenize 284
translate 285
upper-case 286

XQuery predicate 198
XQuery prolog 183

Index 305

XQuery type system
overview 167

xs:anyAtomicType 169
xs:anySimpleType 169
xs:anyType 168
xs:boolean 173
xs:date 173
xs:dateTime 174
xs:decimal 171
xs:double 171
xs:integer 172
xs:string 170
xs:time 178
xs:untyped 169
xs:untypedAtomic 170
XSLTRANSFORM 82
XSR_ADDSCHEMADOC

stored procedure, add to XML schema 108
XSR_COMPLETE

stored procedure, complete schema registration 108
XSR_REGISTER

stored procedure, XML schema registration 108
XSR_REMOVE

stored procedure, remove XML schema 108

Y
year-from-date function 287
year-from-dateTime function 287
yearMonthDuration data type 179
years-from-duration function 288

306 Db2 11 for z/OS: pureXML Guide

IBM®

Product Number: 5615-DB2
 5697-P43

SC19-4064-06

	Contents
	About this information
	Who should read this information
	Db2 Utilities Suite for z/OS
	Terminology and citations
	Accessibility features for Db2 11 for z/OS
	How to send your comments about Db2 for z/OS documentation
	How to read syntax diagrams

	Chapter 1. Overview of pureXML
	pureXML data model
	Sequences and items
	Atomic values
	Nodes
	Document nodes
	Element nodes
	Attribute nodes
	Text nodes
	Processing instruction nodes
	Comment nodes

	Data model generation in XQuery

	Comparison of the XML model and the relational model
	XML data type
	Tutorial: Working with XML data
	Prerequisites for using pureXML
	Setting up the XML schema repository
	Defining the WLM environment and JCL startup procedure for C language XML schema repository stored procedures
	Defining the WLM environment and JCL startup procedure for the Java language XML schema repository stored procedure
	Defining the XML schema repository stored procedures to Db2
	Binding the IBM Data Server Driver for JDBC and SQLJ packages for the XML schema repository
	Testing the XML schema repository setup

	Chapter 2. Working with XML data
	Creation of tables with XML columns
	Altering tables with XML columns
	Storage structure for XML data
	Limitation of XML virtual storage usage
	Insertion of rows with XML column values
	Updates of XML columns
	Updates of entire XML documents
	Partial updates of XML documents

	Deletion of rows with XML documents from tables
	XML versions
	XML support in triggers
	XML parsing
	XML parsing and whitespace handling
	XML parsing and DTDs

	XML schema validation
	XML schema validation and ignorable whitespace
	XML schema validation with an XML type modifier
	How Db2 chooses an XML schema from an XML type modifier
	Revalidation after XML document updates

	XML schema validation with DSN_XMLVALIDATE
	Moving from SYSFUN.DSN_XMLVALIDATE to SYSIBM.DSN_XMLVALIDATE
	How Db2 chooses an XML schema for DSN_XMLVALIDATE

	How to determine whether an XML document has been validated

	Casts between XML data types and SQL data types
	Examples of casts from XML schema data types to SQL data types

	Retrieving XML data
	Retrieval of an entire XML document from an XML column
	XMLQUERY function for retrieval of portions of an XML document
	Non-empty sequences returned by XMLQUERY
	Empty sequences returned by XMLQUERY

	XMLEXISTS predicate for querying XML data
	Constant and parameter marker passing to XMLEXISTS and XMLQUERY
	XMLTABLE function for returning XQuery results as a table
	XMLTABLE advantages
	XMLTABLE example: Inserting values returned from XMLTABLE
	XMLTABLE example: Returning one row for each occurrence of an item
	XMLTABLE example: Specifying a default value for a column in the result table
	XMLTABLE example: Specifying an ordinality column in the result table

	XML support in native SQL routines
	Requests for data in XML columns by earlier Db2 clients

	Functions for constructing XML values
	Special character handling in SQL/XML publishing functions
	XML serialization
	Differences in an XML document after storage and retrieval
	Transforming an XML document with XSLTRANSFORM

	Chapter 3. XML data indexing
	Pattern expressions
	Namespace declarations in XML index definitions
	Data types associated with pattern expressions
	XML schemas and XML indexes
	The UNIQUE keyword in an XML index definition
	Access methods with XML indexes
	Example of DOCID ANDing access (ACCESSTYPE='DI')
	Example of DOCID ORing access (ACCESSTYPE='DU')

	Examples of index definitions and queries that use them
	Examples of XML index usage by equal predicates
	Examples of XML index usage by predicates that test for node existence
	Example of XML index usage by predicates with case-insensitive comparisons
	Example of index usage for an XMLEXISTS predicate with the fn:starts-with function
	Example of index usage for an XMLEXISTS predicate with the fn:substring function
	Example of XML index usage by join predicates
	Example of XML index usage by queries with XMLTABLE

	Chapter 4. XML support in Db2 utilities
	Chapter 5. XML schema management with the XML schema repository (XSR)
	Procedures for XML schema registration and removal that are supplied with Db2
	Example of XML schema registration and removal using stored procedures

	Chapter 6. Db2 application programming language support for XML
	XML data in Java applications
	XML data in embedded SQL applications
	Host variable data types for XML data in embedded SQL applications
	XML column updates in embedded SQL applications
	XML data retrieval in embedded SQL applications

	XML data in ODBC applications
	XML column updates in ODBC applications
	XML data retrieval in ODBC applications

	Data types for archiving XML documents

	Chapter 7. XML data encoding
	Background information on XML internal encoding
	XML encoding considerations
	Encoding considerations for input of XML data to a Db2 table
	Encoding considerations for retrieval of XML data from a Db2 table
	XML data encoding in JDBC and SQLJ applications

	XML encoding scenarios
	Encoding scenarios for input of internally encoded XML data to a Db2 table
	Encoding scenarios for input of externally encoded XML data to a database
	Encoding scenarios for retrieval of XML data with implicit serialization
	Encoding scenarios for retrieval of XML data with explicit XMLSERIALIZE

	Mappings of encoding names to effective CCSIDs for stored XML data
	Mappings of CCSIDs to encoding names for textual XML output data

	Chapter 8. Overview of XQuery
	Best applications for XQuery or XPath
	XML namespaces and qualified names in XQuery
	Case sensitivity in XQuery
	Whitespace in XQuery
	Comments in XQuery

	Chapter 9. XQuery type system
	Overview of the type system
	Constructor functions for built-in data types
	Generic data types
	xs:anyType
	xs:anySimpleType
	xs:anyAtomicType

	Data types for untyped data
	xs:untyped
	xs:untypedAtomic

	xs:string
	Numeric data types
	xs:decimal
	xs:double
	xs:integer
	Range limits for numeric types

	xs:boolean
	Date and time data types
	xs:date
	xs:dateTime
	xs:dayTimeDuration
	xs:duration
	xs:time
	xs:yearMonthDuration

	Casts between XML schema data types

	Chapter 10. XQuery prologs and expressions
	Prologs
	Boundary-space declaration
	Copy-namespaces declaration
	Namespace declarations
	Default namespace declarations

	Expressions
	Expression evaluation and processing
	Atomization
	Type promotion
	Subtype substitution

	Primary expressions
	Literals
	Predefined entity references
	Character references

	Variable references in XQuery
	Parenthesized expression
	Context item expressions
	Function calls in XQuery

	Path expressions
	Axis steps
	Axes
	Node tests
	Predicates

	Abbreviated syntax for path expressions

	Sequence expressions
	Expressions that construct sequences

	Filter expressions
	Arithmetic expressions
	Comparison expressions
	Value comparisons
	General comparisons in XQuery
	Node comparisons

	Logical expressions
	XQuery constructors
	Enclosed expressions in constructors
	Direct element constructors
	Namespace declaration attributes
	Boundary whitespace in direct element constructors
	In-scope namespaces of a constructed element

	Document node constructors
	Processing instruction constructors
	Direct processing instruction constructors

	Comment constructors
	Direct comment constructors

	FLWOR expressions
	Syntax of FLWOR expressions
	for and let clauses
	for clauses
	let clauses
	for and let clauses in the same expression
	Variable scope in for and let clauses

	where clauses
	order by clauses
	return clauses
	FLWOR examples

	Conditional expressions
	Basic updating expressions
	Delete expression
	Insert expression
	Replace expression

	Castable expressions
	Regular expressions

	Chapter 11. Descriptions of XQuery functions
	fn:abs function
	fn:adjust-date-to-timezone function
	fn:adjust-dateTime-to-timezone function
	fn:adjust-time-to-timezone function
	fn:avg function
	fn:boolean function
	fn:compare function
	fn:concat function
	fn:contains function
	fn:count function
	fn:current-date function
	fn:current-dateTime function
	fn:current-time function
	fn:data function
	fn:dateTime function
	fn:day-from-date function
	fn:day-from-dateTime function
	fn:days-from-duration function
	fn:distinct-values function
	fn:hours-from-dateTime function
	fn:hours-from-duration function
	fn:hours-from-time function
	fn:implicit-timezone function
	fn:minutes-from-dateTime function
	fn:minutes-from-duration function
	fn:minutes-from-time function
	fn:month-from-date function
	fn:month-from-dateTime function
	fn:months-from-duration function
	fn:normalize-space function
	fn:last function
	fn:local-name function
	fn:lower-case function
	fn:matches function
	fn:max function
	fn:min function
	fn:name function
	fn:not function
	fn:position function
	fn:replace function
	fn:round function
	fn:seconds-from-datetime function
	fn:seconds-from-duration function
	fn:seconds-from-time function
	fn:starts-with function
	fn:string function
	fn:string-length function
	fn:substring function
	fn:sum function
	fn:timezone-from-date function
	fn:timezone-from-dateTime function
	fn:timezone-from-time function
	fn:tokenize function
	fn:translate function
	fn:upper-case function
	fn:year-from-date function
	fn:year-from-datetime function
	fn:years-from-duration function

	Information resources for Db2 11 for z/OS and related products
	Notices
	General-use Programming Interface and Associated Guidance Information
	Trademarks
	Terms and conditions for product documentation
	Privacy policy considerations

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

